Central Limit Theorem for discrete log–gases Vadim Gorin MIT (Cambridge) and IITP (Moscow) (based on joint work with Alexei Borodin and Alice Guionnet) April, 2015
Setup and overview λ 1 ≤ λ 2 ≤ · · · ≤ λ N , ℓ i = λ i + θ i Probability distributions on discrete N –tuples of the form. N 1 Γ( ℓ j − ℓ i + 1)Γ( ℓ j − ℓ i + θ ) � � w ( ℓ i ; N ) , Z Γ( ℓ j − ℓ i )Γ( ℓ j − ℓ i + 1 − θ ) 1 ≤ i < j ≤ N i =1 Discrete log–gas. We go beyond specific integrable weights.
Setup and overview λ 1 ≤ λ 2 ≤ · · · ≤ λ N , ℓ i = λ i + θ i Probability distributions on discrete N –tuples of the form. N 1 Γ( ℓ j − ℓ i + 1)Γ( ℓ j − ℓ i + θ ) � � w ( ℓ i ; N ) , Z Γ( ℓ j − ℓ i )Γ( ℓ j − ℓ i + 1 − θ ) 1 ≤ i < j ≤ N i =1 Discrete log–gas. We go beyond specific integrable weights. • Appearance in probabilistic models of statistical mechanics. • Law of Large Numbers and Central Limit Theorem for global fluctuations as N → ∞ under mild assumptions on w ( x ; N ) . • Our main tool: discrete loop equations .
Appearance of discrete log–gases N 1 Γ( ℓ j − ℓ i + 1)Γ( ℓ j − ℓ i + θ ) � � w ( ℓ i ; N ) , Z Γ( ℓ j − ℓ i )Γ( ℓ j − ℓ i + 1 − θ ) 1 ≤ i < j ≤ N i =1 At θ = 1 becomes...
Appearance of discrete log–gases N 1 Γ( ℓ j − ℓ i + 1)Γ( ℓ j − ℓ i + θ ) � � w ( ℓ i ; N ) , Z Γ( ℓ j − ℓ i )Γ( ℓ j − ℓ i + 1 − θ ) 1 ≤ i < j ≤ N i =1 At θ = 1 becomes... N 1 � ( ℓ j − ℓ i ) 2 � w ( ℓ i ; N ) , Z 1 ≤ i < j ≤ N i =1 which frequently appears in natural stochastic systems. E.g.
Krawtchouk ensemble empty • N independent simple 7 random walks 6 • probability of jump p 5 4 • started at adjacent lattice 3 points 2 • conditioned never to 1 collide 0 time
Krawtchouk ensemble empty • N independent simple 7 random walks 6 • probability of jump p 5 4 • started at adjacent lattice 3 points 2 • conditioned never to 1 collide 0 t = 7 Claim. (Konig–O’Connel–Roch) Distribution of N walkers at time t N 1 � � M �� � ( ℓ j − ℓ i ) 2 � p ℓ i (1 − p ) M − ℓ i , M = N + t − 1 . ℓ i Z 1 ≤ i < j ≤ N i =1
Krawtchouk ensemble 7 6 5 4 3 2 1 0 t = 7 Claim. (Konig–O’Connel–Roch) Distribution of N walkers at time t N 1 � � M �� � ( ℓ j − ℓ i ) 2 � p ℓ i (1 − p ) M − ℓ i , M = N + t − 1 . ℓ i Z 1 ≤ i < j ≤ N i =1 Claim. (Johansson) In random domino tilings of Aztec diamond.
Krawtchouk ensemble 7 6 5 4 3 2 1 0 t = 7 Claim. (Konig–O’Connel–Roch) Distribution of N walkers at time t N 1 � � M �� � ( ℓ j − ℓ i ) 2 � p ℓ i (1 − p ) M − ℓ i , M = N + t − 1 . ℓ i Z 1 ≤ i < j ≤ N i =1 Claim. (Johansson) In random domino tilings of Aztec diamond.
Hahn ensemble • Regular A × B × C hexagon B • 3 types of lozenges C A
Hahn ensemble • Regular A × B × C hexagon B • 3 types of lozenges C A • uniformly random tiling
Hahn ensemble • Regular A × B × C hexagon B • uniformly random tiling C • Distribution of N horizontal lozenges on t –th vertical? A t
Hahn ensemble • Regular A × B × C hexagon B • uniformly random tiling C • Distribution of N horizontal lozenges on t –th vertical? A N = B + C − t t > max( B , C ) ( a ) n = a ( a +1) . . . ( a + n − 1) t Claim. (Cohn–Larsen–Propp) N 1 � � � ( ℓ i − ℓ j ) 2 � ( A + B + C + 1 − t − ℓ i ) t − B ( ℓ i ) t − C Z i < j i =1
Two–interval support • Regular A × B × C hexagon • Rhombic hole of size D at vertical position H .
Two–interval support • Regular A × B × C hexagon • Rhombic hole of size D at vertical position H . • uniformly random tiling
Two–interval support • Regular A × B × C hexagon • Rhombic hole of size D at vertical position H . • uniformly random tiling • Distribution of N horizontal lozenges on the vertical going through the axis of the hole?
Two–interval support • Regular A × B × C hexagon • Rhombic hole of size D at vertical position H . • uniformly random tiling • Distribution of N horizontal lozenges on the vertical going through the axis of the hole? Claim. It is: (and similarly for k holes) N � � � � ( ℓ i − ℓ j ) 2 ( A + B + C +1 − t − ℓ i ) t − B ( ℓ i ) t − C ( H − ℓ i ) D ( H − ℓ i ) D i < j i =1
General θ case N 1 Γ( ℓ j − ℓ i + 1)Γ( ℓ j − ℓ i + θ ) � � w ( ℓ i ; N ) , Γ( ℓ j − ℓ i )Γ( ℓ j − ℓ i + 1 − θ ) Z 1 ≤ i < j ≤ N i =1 • ℓ i = L · x i , L → ∞ , β = 2 θ . N 1 � � ( x j − x i ) β w ( ℓ i ; N ) . Z 1 ≤ i < j ≤ N i =1 Eigenvalue ensembles of random matrix theory . β = 1 , 2 , 4 corresponds to real/complex/quaternion matrices.
General θ case N 1 Γ( ℓ j − ℓ i + 1)Γ( ℓ j − ℓ i + θ ) � � w ( ℓ i ; N ) , Γ( ℓ j − ℓ i )Γ( ℓ j − ℓ i + 1 − θ ) Z 1 ≤ i < j ≤ N i =1 • ℓ i = L · x i , L → ∞ , β = 2 θ . N 1 � � ( x j − x i ) β w ( ℓ i ; N ) . Z 1 ≤ i < j ≤ N i =1 Eigenvalue ensembles of random matrix theory . β = 1 , 2 , 4 corresponds to real/complex/quaternion matrices. • Another appearance — asymptotic representation theory (Olshanski: (z,w)-measures). Factor Γ( ℓ j − ℓ i +1)Γ( ℓ j − ℓ i + θ ) Γ( ℓ j − ℓ i )Γ( ℓ j − ℓ i +1 − θ ) links to evaluation formulas for Jack symmetric polynomials.
Large N setup N 1 Γ( ℓ j − ℓ i + 1)Γ( ℓ j − ℓ i + θ ) � � w ( ℓ i ; N ) , Z Γ( ℓ j − ℓ i )Γ( ℓ j − ℓ i + 1 − θ ) 1 ≤ i < j ≤ N i =1 k regions with prescribed filling fractions a 1 b 1 a k b k . . . n 1 particles n k particles 1. w ( · ; N ) vanishes at the boundaries of the regions. 2. All data regularly depends on N → ∞
Large N setup N 1 Γ( ℓ j − ℓ i + 1)Γ( ℓ j − ℓ i + θ ) � � w ( ℓ i ; N ) , Z Γ( ℓ j − ℓ i )Γ( ℓ j − ℓ i + 1 − θ ) 1 ≤ i < j ≤ N i =1 k regions with prescribed filling fractions a 1 b 1 a k b k . . . n 1 particles n k particles 1. w ( · ; N ) vanishes at the boundaries of the regions. 2. All data regularly depends on N → ∞ a i = α i N + . . . , b i = β i N + . . . , n i = ˆ n i N + . . . � x � �� w ( x ; N ) = exp , NV N ( z ) = NV ( z ) + . . . NV N N Potential V ( z ) should have bounded derivative (except at end–points, where we allow V ( z ) ≈ c · z ln( z ) ).
Law of Large Numbers N 1 Γ( ℓ j − ℓ i + 1)Γ( ℓ j − ℓ i + θ ) � � w ( ℓ i ; N ) , Z Γ( ℓ j − ℓ i )Γ( ℓ j − ℓ i + 1 − θ ) 1 ≤ i < j ≤ N i =1 Theorem. Suppose that all data regularly depends on N → ∞ , then the LLN holds: There exists µ ( x ) dx with 0 ≤ µ ( x ) ≤ θ − 1 , such that for any Lipshitz f and any ε > 0 � N � 1 � ℓ i � � � � N →∞ N 1 / 2 − ε � lim − f ( x ) µ ( x ) dx � = 0 f � � N N � � � i =1 In fact the difference is O (1 / N ) .
Law of Large Numbers N 1 Γ( ℓ j − ℓ i + 1)Γ( ℓ j − ℓ i + θ ) � � w ( ℓ i ; N ) , Z Γ( ℓ j − ℓ i )Γ( ℓ j − ℓ i + 1 − θ ) 1 ≤ i < j ≤ N i =1 Theorem. Suppose that all data regularly depends on N → ∞ , then the LLN holds: There exists µ ( x ) dx with 0 ≤ µ ( x ) ≤ θ − 1 , such that for any Lipshitz f and any ε > 0 � N � � ℓ i � 1 � � � � N →∞ N 1 / 2 − ε lim f − f ( x ) µ ( x ) dx � = 0 � � � N N � � i =1 µ ( x ) dx is the unique maximizer of the functional I V � ∞ �� I V [ ρ ] = θ ln | x − y | ρ ( dx ) ρ ( dy ) − V ( x ) ρ ( dx ) . x � = y −∞ in appropriate class of measures taking into account filling fractions
Law of Large Numbers N 1 Γ( ℓ j − ℓ i + 1)Γ( ℓ j − ℓ i + θ ) � � w ( ℓ i ; N ) , Z Γ( ℓ j − ℓ i )Γ( ℓ j − ℓ i + 1 − θ ) 1 ≤ i < j ≤ N i =1 Theorem. Suppose that all data regularly depends on N → ∞ , then the LLN holds: There exists µ ( x ) dx with 0 ≤ µ ( x ) ≤ θ − 1 , such that for any Lipshitz f and any ε > 0 � N � 1 � ℓ i � � � � N →∞ N 1 / 2 − ε � lim − f ( x ) µ ( x ) dx � = 0 f � � N N � � � i =1 µ ( x ) dx is the unique maximizer of the functional I V � ∞ �� I V [ ρ ] = θ ln | x − y | ρ ( dx ) ρ ( dy ) − V ( x ) ρ ( dx ) . x � = y −∞ This is a very general statement. Lots of analogues.
Law of Large Numbers: example (Pictures by L. Petrov)
Law of Large Numbers: example Graph of λ i = ℓ i − i (green lozenges) along the middle vertical empty
Law of Large Numbers: example (Pictures by L. Petrov)
Law of Large Numbers: example Graph of λ i = ℓ i − i (green lozenges) along the vertical axis of hole empty The filling fractions above and below the hole are fixed .
Law of Large Numbers: example Averaged λ i = ℓ i − i (green lozenges) along the vertical axis of hole • Frozen region: void. No particles, µ ( x ) = 0 . • Frozen region: saturation. Dense packing, µ ( x ) = θ − 1 . • Band.
Recommend
More recommend