cee 772 instrumental methods in environmental analysis
play

CEE 772: Instrumental Methods in Environmental Analysis Lecture #3 - PDF document

CEE 772 Lecture #3 9/11/2019 Updated: 11 September 2019 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #3 Statistics: Detection Limits Spectroscopy: Beers Law & Electronic Transitions (Skoog, Chapts.


  1. CEE 772 Lecture #3 9/11/2019 Updated: 11 September 2019 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #3 Statistics: Detection Limits Spectroscopy: Beer’s Law & Electronic Transitions (Skoog, Chapts. 6 & 13) (pp.116‐120, 134‐140, 300‐312) (Harris, Chapt. 1) (pp.1-20) David Reckhow CEE 772 #3 1 Errors: Random or Indeterminate • Causes of “Noise” • Result of a large number of small errors which cannot be easily isolated from each other • They occur over short time scales and may be nearly random • Can use classical statistics with these, because of their nearly‐independent and random nature David Reckhow CEE 772 #3 2 1

  2. CEE 772 Lecture #3 9/11/2019 Errors: Systematic or Determinant • Instrumental Errors • Corrected by calibration – Changes in line voltage – Increases in resistances due to oxidation of electrical contacts – Changes in temperature – Vibration of optical elements – Induced currents from nearby power lines David Reckhow CEE 772 #3 3 Errors: Systematic or Determinant • Method Errors • Non‐ideal chemical & physical behavior • Some may also be accounted for by calibration, standard addition, etc. – Incomplete reactions – Unwanted side reactions (interferences) – Contamination of reagents • Personal errors • Lack of concentration on the part of the analyst • Sometimes creates outliers – Mis‐reading instrument or apparatus – Transposing numbers, error in calculations – Addition of incorrect volume David Reckhow CEE 772 #3 4 2

  3. CEE 772 Lecture #3 9/11/2019 Error vs Uncertainty (Aarthi’s addendum) Error (measure of bias) Determinate Indeterminate (systematic) (Random) Can be Statistical corrected testing Uncertainty (range of values) Used for both Different from 10±0.02 mL determinate and precision indeterminate cases (repeatability) David Reckhow CEE 772 #3 5 Detection Limit, Sensitivity & Resolution • Detection Limit – The minimum concentration (or weight) of analyte that can be detected at a known confidence level – Minimum distinguishable signal (S m )     S S k SD s.d. of blank signal m b 1 b 1 Mean blank signal – Often, k=3 for 95% confidence interval (non‐gaussian) – Detection limit (C m )  S S  C m b 1 m m Slope of standard curve David Reckhow CEE 772 #3 6 3

  4. CEE 772 Lecture #3 9/11/2019 Detection Limit, Sensitivity & Resolution Acceptable S/N > 3 in chromatography Aarthi’s addendum David Reckhow CEE 772 #3 7 Detection Limit, Sensitivity & Resolution • Sensitivity – Ability to distinguish small differences in concentration • Calibration Sensitivity: slope of a calibration curve at the concentration of interest • Analytical Sensitivity: response to noise ratio (change in detector signal) slope m   s.d. of signal s s https://www2.chemistry.msu.edu/courses/cem434/Le cture%202.pdf David Reckhow CEE 772 #3 8 4

  5. CEE 772 Lecture #3 9/11/2019 Detection Limit, Sensitivity & Resolution • Resolution (Aarthi’s addendum) – Closeness to true value; closer the value better the resolution – smallest unit of measurement that can be indicated by an instrument. – Different for different instruments Sensitivity is the smallest amount of difference in quantity that will change an instrument's reading. David Reckhow CEE 772 #3 9 Topics Covered • Beer’s Law • Spectra • Structure and Absorbance • Standard Curves David Reckhow CEE 772 #3 10 5

  6. CEE 772 Lecture #3 9/11/2019 Light • The electromagnetic spectrum X-Ray Visible Microwave Gamma Ray Ultraviolet Infrared Radio 10 -5 10 1 10 -13 10 -11 10 -9 10 -7 10 -3 10 -1 Wavelength (m) David Reckhow CEE 772 #3 11 Light https://earthsky.org/space/what-is-the-electromagnetic-spectrum David Reckhow CEE 772 #3 12 6

  7. CEE 772 Lecture #3 9/11/2019 Light C= λƲ C= speed of light = 3X 10^8 m/s E=h λ h= Planck’s constant= 6.62607004 × 10 -34 m 2 kg / s David Reckhow CEE 772 #3 13 David Reckhow CEE 772 #3 14 7

  8. CEE 772 Lecture #3 9/11/2019 Wavelength and Color Also called “complementary color” Wavelength of absorbance Color Absorbed Color Remaining maximum (nm) 380-420 Violet Green-yellow 420-440 Violet-blue Yellow 440-470 Blue Orange 470-500 Blue-green Red 500-520 Green Purple 520-550 Yellow-green Violet 550-580 Yellow Violet-blue 580-620 Orange Blue 620-680 Red Blue-green 680-780 Purple Green David Reckhow CEE 772 #3 15 Transmittance • Beer/Lambert’s Law    x I I o e – Sum of scattering cross section and absorption coefficient      – Absorption coefficient   ac 2 303 . David Reckhow CEE 772 #3 16 8

  9. CEE 772 Lecture #3 9/11/2019 Absorbance • Transmittance • Absorbance  acx I I   – A = -log(T) T e 2 303 . – A = acx o • Absorptivity – a: absorbance per mg/L concentration –  : absorbance for 1 mole/L concentration • Molar absorptivity (L cm -1 mol -1 ) David Reckhow CEE 772 #3 17 Energy Absorption & Bonding Partial energy diagram in a photoluminescence system David Reckhow CEE 772 #3 18 9

  10. CEE 772 Lecture #3 9/11/2019 David Reckhow CEE 772 #3 19 EVE Spectrophotometers Bausch & Lomb to Milton Roy to: ThermoSpectronic; Perkin-Elmer Hewlett- Hach ThermoElectron Packard Characteristic Spec 20 Spec 21D Spec 70 Genesys 20 Genesys 10UV Model 111 Lambda 3A Lambda 3B Diode Array DR/4000U 3 rd fl 3 rd fl storage Location & condition1 Marst 24 Marston 24 304 Elab II 308 Elab II 24 Marston 308 Elab II 304 Elab II storage 213 Elab II 24 Marston Optical system Single Single Single Single beam Split beam Single beam DoubleBeam Double Beam Diode Array Single Beam beam beam beam Monochromator Grating Grating Grating Holographic Holographic Holographic Seya-Namioka Grating Grating Concave Grtn. split-beam Groove Density 600/mm 1200/mm 1200/mm 1440/mm 1440/mm 1200/mm Detector Phototube Solid state Photo- Photo- 328 Photo- multiplier multiplier diodes Lamp(s) Tungsten Tungsten Xenon Tungsten-Br Tungsten-Br Deuteriumb Tungsten, Deuterium Deuterium Deuterium Readout Analog Ditigal Analog Digital Digital Analog Digital Digital Digital Digital Cell Holder 0.5-1" tube 1 cm & tubes multi-position 0.1-10cm 0.1-10cm 0.1-10cm 1-10 cm Wavelength Range 340-625 190-900 nm 190-900nm 190-820nm 190-1100nm Vis Vis 325-1100nm 190-1100nm UV/Vis nm* Wavelength Accuracy 2.5 nm 2.0 nm 1 nm 0.5 nm 0.3 nm 2 nm 1 nm Wavelength Precision 1.0 nm 0.5 nm 0.5 nm 0.2 nm 0.1 nm 0.05 nm 0.1 nm Effective Bandwidth 20 nm 8 nm 5 nm <2 nm 1 nm 2 nm 4 nm Photometric Accuracy 2.5 %T 0.003 A; 1% 0.5% T 0.3 %Td, 0.3 %Td, 0.3 %Td, 0.005 (0.3A up) 0.005 A 0.005 A , A Photometric Precision 1 %T 0.15 %Td, 0.15 %Td, 0.001 A 0.002 A 0.002 A Stray Light < 0.5%+ <0.1%T <0.1%T <0.05% 0.02% <0.05% <0.05%T Baseline Flatness 0.005 A 0.002 A 0.001 A Noise <0.002 A <0.002 A <0.0005 A <0.0003 A <0.0002 A Zero Abs Stability <0.003A/hr <0.001A/hr <0.0005A/hr <0.0005A/hr <0.001A/hr 1 G Gr re ee en n= =g go oo od d o op pe er ra at ti in ng g c co on nd di it ti io on n; ; b bl lu ue e= =s so om me e o op pe er ra at ti io on na al l p pr ro ob bl le em ms s; ; r re ed d= =c cu ur rr re en nt tl ly y n no ot t o op pe er ra at ti in ng g 1 David Reckhow CEE 772 #3 20 10

  11. CEE 772 Lecture #3 9/11/2019 3 .5 G e n e s y s 1 0 U V 3 .0 M in u s H ig h e s t P o in t 2 .5 b [0 ]= 0 .0 1 7 5 4 2 9 2 7 8 Absorbance (cm -1 ) b [1 ]= 1 .5 6 8 0 2 1 1 2 6 r ²= 0 .9 9 9 1 3 5 7 7 8 1 2 .0 A ll D a ta b [0 ]= 0 .0 4 9 8 2 7 5 5 0 5 b [1 ]= 1 .4 0 7 3 3 3 2 2 8 9 1 .5 r ²= 0 .9 9 5 7 8 0 4 2 6 7 1 .0 0 .5 0 .0 0 .0 0 .5 1 .0 1 .5 2 .0 2 .5 C o n c e n tra tio n (m M ) David Reckhow CEE 772 #3 21 1 .0 G e n e s y s 1 0 U V 0 .8 Absorbance (cm -1 ) 0 .6 0 .4 0 .2 0 .0 0 .0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 C o n c e n tra tio n (m M ) David Reckhow CEE 772 #3 22 11

  12. CEE 772 Lecture #3 9/11/2019 H a c h 4 0 0 0 4 M in u s 2 H ig h e s t P o in t s b [0 ]= 0 .0 2 0 9 5 2 9 6 4 4 b [1 ]= 1 .5 6 4 3 4 7 1 9 2 1 r ² = 0 .9 9 9 1 2 7 6 0 2 4 Absorbance (cm -1 ) 3 M in u s H ig h e s t P o in t b [0 ]= 0 .0 5 1 1 1 2 0 2 2 4 2 b [1 ]= 1 .4 1 4 2 3 8 7 1 3 4 r ² = 0 .9 9 6 3 1 8 8 8 9 6 1 0 0 2 4 6 8 1 0 C o n c e n tr a tio n ( m M ) David Reckhow CEE 772 #3 23 1 .0 H a c h 4 0 0 0 0 .8 Absorbance (cm -1 ) 0 .6 0 .4 0 .2 0 .0 0 .0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 David Reckhow CEE 772 #3 24 C o n c e n tra tio n (m M ) 12

Recommend


More recommend