case study of molecular algorithm design
play

Case Study of Molecular Algorithm Design CMC12, - PowerPoint PPT Presentation

Case Study of Molecular Algorithm Design CMC12, Fontainebleau/Paris, August 2011 Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze Friedrich Schiller University, Jena School of Biology and Pharmacy, Department of Bioinformatics Gerd


  1. Case Study of Molecular Algorithm Design CMC12, Fontainebleau/Paris, August 2011 Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze Friedrich Schiller University, Jena School of Biology and Pharmacy, Department of Bioinformatics Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 1

  2. Word 2007 as Turing Machine? Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 2

  3. Word 2007 as Turing Machine? Morphological Algorithms? Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 3

  4. Exact Cover Problem Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 4

  5. Exact Cover Problem X F Elements: X = {a,b,c,d,e} a Subsets: F = {A,B,C} A b B A = {a,d} c C B = {a,b} d C = {c,d,e} e Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 5

  6. Exact Cover Problem X F Elements: X = {a,b,c,d,e} a Subsets: F = {A,B,C} A b B A = {a,d} c C B = {a,b} d C = {c,d,e} e Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 6

  7. Exact Cover Problem X F Elements: X = {a,b,c,d,e} a Subsets: F = {A,B,C} A b B A = {a,d} c C B = {a,b} d C = {c,d,e} e Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 7

  8. Exact Cover Problem X F Elements: X = {a,b,c,d,e} a Subsets: F = {A,B,C} A b B A = {a,d} c C B = {a,b} d C = {c,d,e} e Select Elements such that: ● All elements from X covered ● No element from X covered twice Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 8

  9. Exact Cover Problem X F Elements: X = {a,b,c,d,e} a A b Subsets: B F = {A,B,C} c C d e A = {a,d} B = {a,b} C = {c,d,e} {B,C} is an exact set cover of X : Select Elements such that: ✔ X = B ∪ C, and ● All elements from X covered ✔ B ∩ C = ∅ ● No element from X covered twice Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 9

  10. Exact Cover Problem X F Elements: X = {a,b,c,d,e} a A b Subsets: B F = {A,B,C} a b c d e c C A x x d B x x e A = {a,d} C x x x B = {a,b} C = {c,d,e} {B,C} is an exact set cover of X : Select Elements such that: ✔ X = B ∪ C, and ● All elements from X covered ✔ B ∩ C = ∅ ● No element from X covered twice Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 10

  11. Brute Force Approach X F Rrrrrraar! a A b B c C d e Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 11

  12. Brute Force Approach X F a A b B c C d e Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 12

  13. Brute Force Approach X F a A b B c C d e Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 13

  14. Random Search using Membrane Receptors Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 14

  15. Random Search using Receptors X F Idea: only consider possible solution a (that produce no overlapping elements) A b B c C d e Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 15

  16. Random Search using Receptors X F Idea: only consider possible solution a (that produce no overlapping elements) A b B c a b c d e C d A x x Algorithm X B x x e (Knuth 2000) C x x x Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 16

  17. Random Search using Receptors X F Idea: only consider possible solution a (that produce no overlapping elements) A b B c C d e A B A B A B C C C Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 17

  18. Random Search using Receptors X F a A b B c C d e C={c,d B={a, A={a, b} ,e} d} A B A B A B C C C Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 18

  19. Random Search using Receptors X F a A b B c C d B a b e a d C c d e C={c,d B={a, A={a, b} ,e} d} A B A B A B C C C Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 19

  20. Random Search using Receptors X F a A b B={a C={c,d B ,b} c ,e} C d B a b e a d C c d e C={c,d B={a, A={a, b} ,e} d} A B A B A B C C C Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 20

  21. Random Search using Receptors X F a c a b d e c d e a b A b B={a C={c,d B ,b} c ,e} C d B a b e a d C c d e C={c,d B={a, A={a, b} ,e} d} A B A B A B C C C Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 21

  22. Random Search using Receptors @model<transition> [lS{6}[rS{6},rS{2}]'C --> [s{6}]'C]'1; def main(){ [lS{7}[rS{7},rS{3}]'C --> [s{7}]'C]'1; /* initial configuration */ [lS{8}[rS{8},rS{4}]'C --> [s{8}]'C]'1; [lS{9}[rS{9},rS{1}]'C --> [s{9}]'C]'1; /* 5 candidate solutions */ [lS{10}[rS{10},rS{2}]'C --> [s{10}]'C]'1; @mu=[[[]'C]'1 [[]'C]'1 [[]'C]'1 [[]'C]'1 [[]'C]'1]'2; /* if there remain open channels, then use them */ /* one ligand for each subset, F X [lS{i}[rS{i},c{m}]'C --> [s{i},c{m}]'C]'1:1<=i<=k,1<=m<n; and a "No" symbol */ A a @ms(1)=lS{1},lS{2},lS{3},lS{4},lS{5}, /* count the elements to evaluate the candidate */ lS{6},lS{7},lS{8},lS{9},lS{10},No; [[s{1}]'C --> s{1}[x{1},x{2},x{3}]'C]'1; B b [[s{2}]'C --> s{2}[x{4},x{5},x{6}]'C]'1; /* one receptor for each subset, C c [[s{3}]'C --> s{3}[x{7},x{8}]'C]'1; and a counter molecule */ [[s{4}]'C --> s{4}[x{9},x{10}]'C]'1; D d @ms(C)=rS{1},rS{2},rS{3},rS{4},rS{5}, [[s{5}]'C --> s{5}[x{1}]'C]'1; rS{6},rS{7},rS{8},rS{9},rS{10},c{0}; E e [[s{6}]'C --> s{6}[x{4}]'C]'1; [[s{7}]'C --> s{7}[x{7}]'C]'1; F f /* local variables */ [[s{8}]'C --> s{8}[x{9}]'C]'1; let n = 10; /* number of elements to cover */ [[s{9}]'C --> s{9}[x{2}]'C]'1; G g let k = 10; /* number of subsets */ [[s{10}]'C --> s{10}[x{5}]'C]'1; H h [x{i},c{m} --> xc{i},c{m+1}]'C:1<=i<=n,0<=m<=n; /* rules */ I i /* if the set is covered then send a /* cooperative rules controlling channels */ J j positive answer to the environment */ [lS{1}[rS{1},rS{5},rS{9}]'C --> [s{1}]'C]'1; [No[c{n}]'C --> Yes[c{n}]'C]'1; [lS{2}[rS{2},rS{6},rS{10}]'C --> [s{2}]'C]'1; [Yes]'1 --> Yes []'1; [lS{3}[rS{3},rS{7}]'C --> [s{3}]'C]'1; [Yes]'2 --> Yes []'2; [lS{4}[rS{4},rS{8}]'C --> [s{4}]'C]'1; } [lS{5}[rS{5},rS{1}]'C --> [s{5}]'C]'1; Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 22

  23. Dynamically Modified Problem Instance Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 23

  24. Dynamically Modified Problem Instance X F Before: Reactions define problem instance. Now: Molecules define problem instance. a A b B c a b d e c d e a b c C d C={c,d ,e} e B a b C c d e C={c,d B={a ,b} ,e} A A B B C C Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 24

  25. Dynamically Modified Problem Instance X F Before: Reactions define problem instance. Now: Molecules define problem instance. a a A b A b B c gen phen c B C d C d e e A B c d e a b C Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 25

  26. Dynamically Modified Problem Instance X F Before: Reactions define problem instance. Now: Molecules define problem instance. a a A b A b B c gen phen c B C d C d e e Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 26

  27. Dynamically Modified Problem Instance X F Before: Reactions define problem instance. Now: Molecules define problem instance. a a A b A b B c gen phen c B C d C d e e + a a b b B c T-c B trans T-C C d T-d a a A B d d e T-e Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 27

  28. Dynamically Modified Problem Instance X F Before: Reactions define problem instance. Now: Molecules define problem instance. a a A b A b B c gen phen c B C d C d T - e C e C c trans T - c d a a b T - d b e B B T - e a a A B d d Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 28

  29. Dynamically Modified Problem Instance X F Before: Reactions define problem instance. Now: Molecules define problem instance. a a A b A b B c gen phen c B T-c C d C d T-d T - e C e T-e C c trans d a a b all or nothing! b e B B a a A B d d Gerd Gruenert, Gabi Escuela, Peter Dittrich, Thomas Hinze – Uni Jena, Bio Systems Analysis Group 29

Recommend


More recommend