case study iii evaluating model risk within the black
play

CASE STUDY III EVALUATING MODEL RISK WITHIN THE BLACKSCHOLES - PowerPoint PPT Presentation

CASE STUDY III EVALUATING MODEL RISK WITHIN THE BLACKSCHOLES FRAMEWORK Limiting Model Risk by Short-Selling Constraints Outline for case study III Samuelson (BlackScholes) model Exotic options, unlimited short positions


  1. CASE STUDY III EVALUATING MODEL RISK WITHIN THE BLACK–SCHOLES FRAMEWORK Limiting Model Risk by Short-Selling Constraints

  2. Outline for case study III • Samuelson (Black–Scholes) model • Exotic options, unlimited short positions • Mitigation of model risk by short-selling constraints • Resulting market incompleteness, upper hedging price • Incorporation of constraint into option price • Option price as stochastic control problem • Explicit valuation for several examples

  3. References for case study III • U. Schmock, S. E. Shreve, U. Wystup: Valuation of Exotic Options under Shortselling Constraints Finance and Stochastics, Vol. 6 (2002) 143–172. • U. Schmock, S. E. Shreve, U. Wystup: Dealing with Dangerous Digitals In: J. Hakala and U. Wystup (eds.): Foreign Exchange Risk: Models, Instruments and Strategies Risk Books, Risk Waters Group (2002) 327–348.

  4. Samuelson model Geometric Brownian motion for the exchange rate: dS t = ( r d − r f ) S t dt + σS t dW t , S 0 > 0 S t price of one unit of foreign currency in domestic currency at time t ∈ [0 , T ] r d ∈ R risk-free domestic interest rate r f ∈ R risk-free foreign interest rate σ > 0 volatility ( W t ) t ∈ [0 ,T ] Brownian motion (Wiener process) under the risk-neutral measure P r � r d − r f mean rate of return of the exchange rate

  5. Samuelson model (cont.) Equity model S t stock price at time t r d ∈ R risk-free domestic interest rate f ∈ R continuously paid dividend rate r Solution of the SDE � � rt + σW t − σ 2 t ∈ [0 , T ] S t = S 0 exp 2 t , Canonical probability space Ω = C ([0 , T ] , R ) ∋ ω �→ W t ( ω ) = ω ( t ) σ -algebra F t is the P -completion of σ ( W s ; s ∈ [0 , t ]), i. e., {F t } t ∈ [0 ,T ] is a Brownian filtration.

  6. Hedging a European call option with strike K • Pay-off at maturity T is ( S T − K ) + where S T is the price of the underlying at time T and K > 0 is the strike price. • To hedge the call, buy a fraction of the underlying (delta-hedging). In the Samuelson model: Calculation of the fraction ∈ (0 , 1) at time t by differentiation of the Black–Scholes formula w. r. t. S t � log( S t /K ) + ( r + σ 2 / 2)( T − t ) � √ N σ T − t

  7. Option value 12 10 8 50 days 6 4 10 days 2 1 day Stock price S t 90 95 100 105 110 Price of a European call option for three different maturities, interest rate r = 5%, volatility σ = 30%, strike price K = 100

  8. 1 Fraction of stock in hedging portfolio 0.8 0.6 0.4 50 days 1 day 0.2 10 days Stock price S t 90 95 100 105 110 Hedge for a European call option for three different maturities, interest rate r = 5%, volatility σ = 30%, strike price K = 100

  9. Reverse up-and-out call European call option with strike K > 0 and knock- out barrier B > K . Pay-off at maturity T g ( S ) � ( S T − K ) + 1 { max t ∈ [0 ,T ] S t <B } No-arbitrage Black–Scholes price at time t ∈ [0 , T ] v ( t, x ) = E t,x � � e − r d ( T − t ) ( S ( T ) − K ) + 1 { max u ∈ [ t,T ] S u <B } if S t = x > 0 and no knock-out occurred before t . Delta hedging: – If S t is well below B : Buy a fraction of the underlying. – If S t is just below B : Go short in the underlying.

  10. Price of the reverse up-and-out call f τ � � v ( t, x ) = xe − r N ( b − θ + ) − N ( k − θ + ) f τ +2 bθ + � � + xe − r N ( b + θ + ) − N (2 b − k + θ + ) − Ke − r d τ � � N ( b − θ − ) − N ( k − θ − ) − Ke − r d τ +2 bθ − � � N ( b + θ − ) − N (2 b − k + θ − ) where N is the standard normal distribution function, � r � √ τ σ ± σ τ � T − t, θ ± � 2 and σ √ τ log B 1 σ √ τ log K 1 b � k � x , x .

  11. 50 Option value option pay-off 40 1 day 30 10 days 20 50 days 10 Stock price S t 90 100 110 120 130 140 150 Price of a European call option with knock-out barrier B = 150 for three different maturities together with the option pay-off, interest rate r = 5%, volatility σ = 30%, strike price K = 100

  12. Number of stocks in hedging portfolio 1 0.5 50 days 10 days Stock price S t 130 0 100 110 120 140 150 − 0 . 5 1 day − 1 − 1 . 5 Hedge of a European call option with knock-out barrier B = 150 for three different maturities, interest rate r = 5%, volatility σ = 30%, strike price K = 100

  13. Fraction π t of capital in the stock 135 140 145 150 0 Stock price S t 10 days 50 days − 20 1 day − 40 − 60 − 80 − 100 Fraction π t of capital invested in the stock to replicate a European call option with knock-out barrier B = 150 for three different maturities, interest rate r = 5%, volatility σ = 30%, strike price K = 100

  14. Problems with large FX positions • Large exposure for one sold barrier option • Liquidity risk and transaction costs • High model risk! Possible solutions • Pay a rebate at maturity or at the first hitting time of the barrier, when the option knocks out. • Modify the knock-out regulation (soft barrier option, step option, Parisian option). • Impose constraint for the hedge portfolio. → incomplete market, superhedge the option

  15. Evolution of the hedge capital X t π t fraction of X t in foreign currency (adapted) 1 − π t fraction of X t in domestic currency C t capital consumed in [0 , t ] dX t = π t X t dS t + r f π t X t dt + r d (1 − π t ) X t dt − dC t S t = r d X t dt + σπ t X t dW t − dC t Option pay-off Lower semi-continuous function g : C + [0 , T ] → [0 , ∞ ) Short-selling constraint for foreign currency π t ≥ − α for all t ∈ [0 , T ] with α ≥ 0

  16. Upper hedging price v (0 , S 0 ; α ) � inf { X 0 | ∃ ( π, C ) with X T ≥ g ( S ) and π t ≥ − α ∀ t ∈ [0 , T ] } Dual maximization problem Theorem: ( Cvitani´ c & Karatzas 1993, El Karoui & Quenez 1995 ) � � e − r d T − αλ T g ( S ) v (0 , S 0 ; α ) = sup E λ λ ∈L L contains all adapted, non-decreasing λ with λ (0) = 0, which are Lipschitz-continuous in t , uniformly in ω . � � � T � T d P λ − 1 1 t ) 2 dt λ ′ ( λ ′ t dW t − d P = exp 2 σ 2 σ 0 0

  17. Simplification for dependence on final value Theorem: ( Broadie, Cvitani´ c & Soner 1998 ) � � e − r d T � If g ( S ) = ϕ ( S T ), then v (0 , S 0 ; α ) = E ϕ α ( S T ) with face-lift e − αλ ϕ ( xe − λ ) , ϕ α ( x ) � sup x ≥ 0 . � λ ≥ 0 Aim of our work • Generalization to path-dependent options by conversion of the dual maximization problem to a stochastic control problem. • Explicit computation of the upper hedging price for several examples.

  18. Idea behind Broadie–Cvitani´ c–Soner theorem ( t, x ) �→ v ( t, x ; α ) is the smallest function which • satisfies the Black–Scholes PDE v t + rxv x + 1 2 σ 2 x 2 v xx − r d v = 0 , • dominates the final pay-off, i.e. v ( T, x ; α ) ≥ ϕ ( x ), • satisfies the constraint αv ( t, x ; α )+ xv x ( t, x, α ) ≥ 0. ϕ α is the smallest function dominating the pay-off � ϕ ′ α ( x ) ≥ 0. and satisfying the constraint α � ϕ α ( x ) + x � → Solve Black–Scholes PDE with pay-off � ϕ α . Pleasant surprise: Solution satisfies constraint!

  19. Extension to path-dependent up-and-out call Observation: If v ( t, x ; α ) solves the Black–Scholes PDE, then w � αv + xv x solves the PDE, too. Strategy: • Boundary conditions for v give boundary condi- tions for w . • Require w = 0 at the boundary where the uncon- strained value function violates the constraint. • Solve Black–Scholes PDE for w . • Solve w � αv + xv x for v .

  20. Formulation of the dual problem as singular stochastic control problem Theorem (Schmock/Shreve/Wystup): � � e − r d T − αλ T g ( Se − λ ) v (0 , S 0 ; α ) = sup E λ ∈C where C � { λ | λ adapted, non-decreasing, continuous process, λ (0) = 0 } . Remarks: • Maximization w. r. t. processes is easier. • Maximizing process can be found in many examples. • Maximizing processes can be singularly continuous. • Since g is lower instead of upper semi-continuous, maximizing processes need not exist.

  21. Application to a European call option with strike K and knock-out barrier B > K Obligation at maturity T : g ( S ) � ( S T − K ) + 1 { max t ∈ [0 ,T ] S t <B } Maximization problem: � e − r d T − αλ T � � + 1 { max t ∈ [0 ,T ] S t e − λt <B } � S T e − λ T − K sup E λ ∈C Supremum unchanged for < → ≤ . Maximizing process: S t e − λ t ≤ B ⇐ ⇒ λ t ≥ log S t − log B ⇒ λ t ≥ λ ∗ u ∈ [0 ,t ] (log S u − log B ) + t � max =

  22. Upper hedging price f τ � v ∗ ( t, x, α ) = xe − r N ( b − θ + ) − N ( k − θ + ) �� � 2 s ( s − 2 θ + ) × 1 e sb N ( − b + θ + − s ) − e sk N ( − k + θ + − s ) + e � f τ +2 bθ + + sxe − r 1 2 s ( s − 2 θ + ) N ( b + θ + ) − N ( ℓ + θ + ) + e s − 2 θ + �� � e ( s − 2 θ + ) b N ( − b + θ + − s ) − e ( s − 2 θ + ) ℓ N ( − ℓ + θ + s ) × − Ke − r d τ � N ( b − θ − ) − N ( k − θ − ) �� s − 2 θ − ) � 1 2 ˜ s (˜ e ˜ s ) − e ˜ sb N ( − b + θ − − ˜ sk N ( − k + θ − − ˜ + e s ) � sKe − r d τ +2 bθ − − ˜ 1 2 ˜ s (˜ s − 2 θ − ) N ( b + θ − ) − N ( ℓ + θ − ) + e s − 2 θ − ˜ �� � e (˜ s − 2 θ − ) b N ( − b + θ − − ˜ s ) − e (˜ s − 2 θ − ) ℓ N ( − ℓ + θ − − ˜ × s )

Recommend


More recommend