The kernels Γ 12 , Γ 22 show that only v x influences u : e − ( x 2 − λt ) 2 / (4(1 − λ 2 )(1+ t )) Γ 12 ( t, x ) = ∂ + exp.dec, h.o. terms , � ∂x (1 − λ 2 )(1 + t ) 2 e − ( x 2 − λt ) 2 / (4(1 − λ 2 )(1+ t )) Γ 22 ( t, x ) = ∂ ∂ + ”,” + exp.dec . � ∂x ∂x (1 − λ 2 )(1 + t ) 2 This result is important when studying decay to an equilibrium state (¯ u, ¯ v ) = (0 , F (0) = 0), because by Duhamel formula 8
The kernels Γ 12 , Γ 22 show that only v x influences u : e − ( x 2 − λt ) 2 / (4(1 − λ 2 )(1+ t )) Γ 12 ( t, x ) = ∂ + exp.dec, h.o. terms , � ∂x (1 − λ 2 )(1 + t ) 2 e − ( x 2 − λt ) 2 / (4(1 − λ 2 )(1+ t )) Γ 22 ( t, x ) = ∂ ∂ + ”,” + exp.dec . � ∂x ∂x (1 − λ 2 )(1 + t ) 2 This result is important when studying decay to an equilibrium state (¯ u, ¯ v ) = (0 , F (0) = 0), because by Duhamel formula � t � � � � � � u ( t ) u (0) 0 = Γ( t ) ∗ + 0 Γ( t − s ) ∗ ds v ( t ) v (0) F ( u ( s )) − A (0) u ( s ) � �� � ≈ G x ( t − s ) ∗ u ( s ) 2 8
• The dependence w.r.t. u 0 + �u 0 ,t can be easily seen with the example u t = � ( u xx − u tt ) . with initial data u (0) = 0, u t (0) = � − 1 . 9
• The dependence w.r.t. u 0 + �u 0 ,t can be easily seen with the example u t = � ( u xx − u tt ) . with initial data u (0) = 0, u t (0) = � − 1 . The solution is 1 − e − t/� , which converges to u ( t ) ≡ 1, t > 0. 9
• The dependence w.r.t. u 0 + �u 0 ,t can be easily seen with the example u t = � ( u xx − u tt ) . with initial data u (0) = 0, u t (0) = � − 1 . The solution is 1 − e − t/� , which converges to u ( t ) ≡ 1, t > 0. The hyperbolic limit � → 0 has the ”initial data” t → 0+ u ( t ) = 1 = lim lim � → 0 u 0 + �u t, 0 . 9
BV estimates in the conservative case 10
BV estimates in the conservative case We assume A ( u ) = D F ( u ), � = 1 and u 0 ,t ∈ L 1 . 10
BV estimates in the conservative case We assume A ( u ) = D F ( u ), � = 1 and u 0 ,t ∈ L 1 . Differentiating w.r.t. x the BGK scheme (2) 10
BV estimates in the conservative case We assume A ( u ) = D F ( u ), � = 1 and u 0 ,t ∈ L 1 . Differentiating w.r.t. x the BGK scheme (2) f − + I − A ( u ) − I + A ( u ) f − t − f − f + = f ± = F ± x 2 2 (8) x . I + A ( u ) f − − I − A ( u ) f + + f + f + = x t 2 2 10
BV estimates in the conservative case We assume A ( u ) = D F ( u ), � = 1 and u 0 ,t ∈ L 1 . Differentiating w.r.t. x the BGK scheme (2) f − + I − A ( u ) − I + A ( u ) f − t − f − f + = f ± = F ± x 2 2 (8) x . I + A ( u ) f − − I − A ( u ) f + + f + f + = x t 2 2 Differentiating (2) w.r.t. t we obtain 10
BV estimates in the conservative case We assume A ( u ) = D F ( u ), � = 1 and u 0 ,t ∈ L 1 . Differentiating w.r.t. x the BGK scheme (2) f − + I − A ( u ) − I + A ( u ) f − t − f − f + = f ± = F ± x 2 2 (8) x . I + A ( u ) f − − I − A ( u ) f + + f + f + = x t 2 2 Differentiating (2) w.r.t. t we obtain − I + A ( u ) g − + I − A ( u ) g − t − g − g + = g ± = F ± x 2 2 t . (9) I + A ( u ) g − − I − A ( u ) g + t + g + g + = x 2 2 10
BV estimates in the conservative case We assume A ( u ) = D F ( u ), � = 1 and u 0 ,t ∈ L 1 . Differentiating w.r.t. x the BGK scheme (2) − I + A ( u ) f − + I − A ( u ) f − t − f − f + = f ± = F ± x 2 2 x . (8) f + + f + I + A ( u ) f − − I − A ( u ) f + = x t 2 2 Differentiating (2) w.r.t. t we obtain − I + A ( u ) g − + I − A ( u ) g − g + t − g − = g ± = F ± x 2 2 t . (9) g + t + g + I + A ( u ) g − − I − A ( u ) g + = x 2 2 Our aim: � f ± (0) � L 1 , � g ± (0) � L 1 ≤ δ 0 f ± ( t ) , g ± ( t ) ∈ L 1 ( R ) . = ⇒ 10
Center manifold of travelling profiles 11
Center manifold of travelling profiles We study the ODE − σu x + A ( u ) u x = (1 − σ 2 ) u xx , 11
Center manifold of travelling profiles We study the ODE − σu x + A ( u ) u x = (1 − σ 2 ) u xx , which can be written as the first order system u x = p (1 − σ 2 ) p x = ( A ( u ) − σI ) p (10) = 0 σ x 11
Center manifold of travelling profiles We study the ODE − σu x + A ( u ) u x = (1 − σ 2 ) u xx , which can be written as the first order system u x = p (1 − σ 2 ) p x = ( A ( u ) − σI ) p (10) = 0 σ x Close to any equilibrium (0 , 0 , λ i (0)), one can find a center man- ifold of travelling profiles: 11
Center manifold of travelling profiles We study the ODE − σu x + A ( u ) u x = (1 − σ 2 ) u xx , which can be written as the first order system u x = p (1 − σ 2 ) p x = ( A ( u ) − σI ) p (10) = 0 σ x Close to any equilibrium (0 , 0 , λ i (0)), one can find a center man- ifold of travelling profiles: ˜ p = v i ˜ r i ( u, v i , σ ) , λ i = � ˜ r i , A ( u )˜ r i � , | ˜ r i ( u ) | = 1 . (11) 11
We can parameterize by the the kinetic component f i : 12
We can parameterize by the the kinetic component f i : u t = f − − f + = − σu x = f − + f + 12
We can parameterize by the the kinetic component f i : u t = f − − f + = − σu x = f − + f + 1 1 1 − σf − = 1 + σf + . u x = 12
We can parameterize by the the kinetic component f i : u t = f − − f + = − σu x = f − + f + 1 1 1 − σf − = 1 + σf + . u x = The center manifold for the kinetic components f − , f + is (12) (13) 12
We can parameterize by the the kinetic component f i : u t = f − − f + = − σu x = f − + f + 1 1 1 − σf − = 1 + σf + . u x = The center manifold for the kinetic components f − , f + is f − = (12) (13) 12
We can parameterize by the the kinetic component f i : u t = f − − f + = − σu x = f − + f + 1 1 1 − σf − = 1 + σf + . u x = The center manifold for the kinetic components f − , f + is f − = (1 − σ ) v i ˜ r i ( u, v i , σ ) (12) (13) 12
We can parameterize by the the kinetic component f i : u t = f − − f + = − σu x = f − + f + 1 1 1 − σf − = 1 + σf + . u x = The center manifold for the kinetic components f − , f + is � � f − f − = (1 − σ ) v i ˜ r i ( u, v i , σ )= f − i i ˜ r i u, 1 − σ, σ (12) (13) 12
We can parameterize by the the kinetic component f i : u t = f − − f + = − σu x = f − + f + 1 1 1 − σf − = 1 + σf + . u x = The center manifold for the kinetic components f − , f + is � � f − f − = (1 − σ ) v i ˜ r i ( u, v i , σ )= f − = f − r − i ( u, f − i i ˜ r i u, 1 − σ, σ i ˜ i , σ ) (12) (13) 12
We can parameterize by the the kinetic component f i : u t = f − − f + = − σu x = f − + f + 1 1 1 − σf − = 1 + σf + . u x = The center manifold for the kinetic components f − , f + is � � f − f − = (1 − σ ) v i ˜ r i ( u, v i , σ )= f − = f − r − i ( u, f − i i ˜ r i u, 1 − σ, σ i ˜ i , σ ) (12) � � u, (1 + σ ) v i f + = (1 + σ )˜ r i , σ 1 + σ (13) 12
We can parameterize by the the kinetic component f i : u t = f − − f + = − σu x = f − + f + 1 1 1 − σf − = 1 + σf + . u x = The center manifold for the kinetic components f − , f + is � � f − f − = (1 − σ ) v i ˜ r i ( u, v i , σ )= f − = f − r − i ( u, f − i i ˜ r i u, 1 − σ, σ i ˜ i , σ ) (12) � � u, (1 + σ ) v i f + = (1 + σ )˜ = f + r + i ( u, f + r i , σ i ˜ i , σ ) 1 + σ (13) 12
Identification of a travelling profile: u (¯ x ), σ and v i (¯ x ), 13
Identification of a travelling profile: u (¯ x ), σ and v i (¯ x ), u σ u(x− t) x u x x − + f ,f − x x 13
x ), σ and f − Identification of a travelling profile: u (¯ i (¯ x ), u σ u(x− t) x u x x − + f ,f σ (1− )u x − x x 14
x ), σ and f + Identification of a travelling profile: u (¯ i (¯ x ), u σ u(x− t) x u x x − + σ f ,f (1+ )u x σ (1− )u x − x x 15
Decomposition in travelling profiles 16
Decomposition in travelling profiles We decompose ( f − , g − ) and ( f + , g + ) separately: 16
Decomposition in travelling profiles We decompose ( f − , g − ) and ( f + , g + ) separately: (14) 16
Decomposition in travelling profiles We decompose ( f − , g − ) and ( f + , g + ) separately: � i f − r − i ( u, f − i , σ − f − � = i ˜ i ) (14) i g − r − i ( u, f − i , σ − g − � = i ˜ i ) 16
Decomposition in travelling profiles We decompose ( f − , g − ) and ( f + , g + ) separately: � � − g − � i f − r − i ( u, f − i , σ − f − � = i ˜ i ) σ − i i = θ i (14) , i g − r − i ( u, f − i , σ − g − � f − = i ˜ i ) i 16
Decomposition in travelling profiles We decompose ( f − , g − ) and ( f + , g + ) separately: � � − g − � i f − r − i ( u, f − i , σ − f − � = i ˜ i ) σ − i i = θ i (14) , i g − r − i ( u, f − i , σ − g − � f − = i ˜ i ) i θ i λ i where θ i is the cutoff function . − − −g /f i i 16
Decomposition in travelling profiles We decompose ( f − , g − ) and ( f + , g + ) separately: � � − g − � i f − r − i ( u, f − i , σ − f − � = i ˜ i ) σ − i i = θ i (14) , i g − r − i ( u, f − i , σ − g − � f − = i ˜ i ) i θ i λ i where θ i is the cutoff function . − − −g /f i i Similarly for ( f + , g + ): 16
Decomposition in travelling profiles We decompose ( f − , g − ) and ( f + , g + ) separately: � � − g − � i f − r − i ( u, f − i , σ − f − � = i ˜ i ) σ − i i = θ i (14) , i g − r − i ( u, f − i , σ − g − � f − = i ˜ i ) i θ i λ i where θ i is the cutoff function . − − −g /f i i Similarly for ( f + , g + ): − g + � i f + r + i ( u, f + i , σ + f + � = i ˜ i ) σ + i , = θ i (15) i g + r + i ( u, f + i , σ + i g + � f + = i ˜ i ) i 16
To find travelling profiles, we look separately to the t , x deriva- tives of F − , F + , and try to fit n travelling profiles into F − and n into F + . 17
To find travelling profiles, we look separately to the t , x deriva- tives of F − , F + , and try to fit n travelling profiles into F − and n into F + . F − t x 17
To find travelling profiles, we look separately to the t , x deriva- tives of F − , F + , and try to fit n travelling profiles into F − and n into F + . F − t x 18
To find travelling profiles, we look separately to the t , x deriva- tives of F − , F + , and try to fit n travelling profiles into F − and n into F + . F − t φ σ (x− t) x 19
To find travelling profiles, we look separately to the t , x deriva- tives of F − , F + , and try to fit n travelling profiles into F − and n into F + . F − t φ σ (x− t) x We obtain thus 2 n travelling waves: n for F − and n for F + . 19
Equation for the components f ± i , g ± are of the form: i 20
Equation for the components f ± i , g ± are of the form: i λ + λ − 1+˜ 1 − ˜ f − j,t − f − f − f + + ς − j j = j + f,j ( t, x ) − j,x j 2 2 (16) λ + λ − 1+˜ 1 − ˜ f + j,t + f + f + + ς + f − j j = j − f,j ( t, x ) j,x j 2 2 20
Equation for the components f ± i , g ± are of the form: i λ + λ − 1+˜ 1 − ˜ f − j,t − f − f − f + + ς − j j = j + f,j ( t, x ) − j,x j 2 2 (16) λ + λ − 1+˜ 1 − ˜ f + j,t + f + f + + ς + f − j j = j − f,j ( t, x ) j,x j 2 2 λ + λ − − 1+˜ i + 1 − ˜ g − i,t − g − g − g + + ς − i i = g,i ( t, x ) i,x 2 2 i (17) λ + λ − 1+˜ i − 1 − ˜ g + i,t + g + g + + ς + g − i i = g,i ( t, x ) i,x i 2 2 20
Equation for the components f ± i , g ± are of the form: i λ + λ − 1+˜ 1 − ˜ f − j,t − f − f − f + + ς − j j = j + f,j ( t, x ) − j,x j 2 2 (16) λ + λ − 1+˜ 1 − ˜ f + j,t + f + f + + ς + f − j j = j − f,j ( t, x ) j,x j 2 2 λ + λ − − 1+˜ i + 1 − ˜ g − i,t − g − g − g + + ς − i i = g,i ( t, x ) i,x 2 2 i (17) λ + λ − 1+˜ i − 1 − ˜ g + i,t + g + g + + ς + g − i i = g,i ( t, x ) i,x i 2 2 with ς ± f , ς ± g sources of total variation for F ± x , F ± and g 20
Equation for the components f ± i , g ± are of the form: i λ + λ − 1+˜ 1 − ˜ f − j,t − f − f − f + + ς − j j = j + f,j ( t, x ) − j,x j 2 2 (16) λ + λ − 1+˜ 1 − ˜ f + j,t + f + f + + ς + f − j j = j − f,j ( t, x ) j,x j 2 2 λ + λ − − 1+˜ i + 1 − ˜ g − i,t − g − g − g + + ς − i i = g,i ( t, x ) i,x 2 2 i (17) λ + λ − 1+˜ i − 1 − ˜ g + i,t + g + g + + ς + g − i i = g,i ( t, x ) i,x i 2 2 with ς ± f , ς ± g sources of total variation for F ± x , F ± and g � � f + f − λ + , σ + λ − , σ − i i . ˜ i = ˜ ˜ = ˜ λ i u, , λ i u, 1 − σ − i i 1 + σ − i i i 20
After some computations, one obtains the source terms of the form 21
After some computations, one obtains the source terms of the form � � j | )( | f + k | + | g + j f + j g + | ς ± f,i | , | ς ± ( | f − j | + | g − | g − − f − g,i | ≤ C k | ) + C j | j j j � = k f + � � j | 2 + | g − j � | f − j + f + j + g + j | 2 + C χ ≇ 1 f − j j � ( � f − L 1 + � f + L 1 ) | f − j − f + j | χ { f − j · f + j � 2 j � 2 + C < 0 } j j � L 1 + � f + j − g + j · g + ( � f − j � 2 j � 2 L 1 ) | g − j | χ { g − + C < 0 } . j j (18) 21
After some computations, one obtains the source terms of the form � � j | )( | f + k | + | g + j f + j g + | ς ± f,i | , | ς ± ( | f − j | + | g − | g − − f − g,i | ≤ C k | ) + C j | j j j � = k f + � � j | 2 + | g − j � | f − j + f + j + g + j | 2 + C χ ≇ 1 f − j j � ( � f − L 1 + � f + L 1 ) | f − j − f + j | χ { f − j · f + j � 2 j � 2 + C < 0 } j j � L 1 + � f + j − g + j · g + ( � f − j � 2 j � 2 L 1 ) | g − j | χ { g − + C < 0 } . j j (18) Prove that the source terms are quadratic w.r.t. � f ± � L 1 , � g ± � L 1 . 21
Different types of source terms: 22
Different types of source terms: • interaction of different families: � ( | f − j | + | g − j | )( | f + k | + | g + k | ); j � = k 22
Different types of source terms: • interaction of different families: � ( | f − j | + | g − j | )( | f + k | + | g + k | ); j � = k • interaction of the same family: � j f + j g + | g − − f − C j | ; j j 22
Different types of source terms: • interaction of different families: � ( | f − j | + | g − j | )( | f + k | + | g + k | ); j � = k • interaction of the same family: � j f + j g + | g − − f − C j | ; j j • energy type terms: j | 2 + | g − � ( | f − j + f + j + g + j | 2 ) χ { f + j /f − j ≇ 1 } ; j 22
Different types of source terms: • interaction of different families: � ( | f − j | + | g − j | )( | f + k | + | g + k | ); j � = k • interaction of the same family: � j f + j g + | g − − f − C j | ; j j • energy type terms: j | 2 + | g − � ( | f − j + f + j + g + j | 2 ) χ { f + j /f − j ≇ 1 } ; j • L 1 decay terms: � � | f − j − f + j | χ { f − j · f + | g − j − g + j | χ { g − j · g + < 0 } + < 0 } . j j j j 22
Interaction of the same family 23
Interaction of the same family Consider the 2 × 2 system 1 −F ( u ) F − t − F − − F − = u = F − + F + , |F ′ ( u ) | ≤ 1 − c. x 2 1+ F ( u ) F + − F + − F + = x t 2 (19) 23
Interaction of the same family Consider the 2 × 2 system 1 −F ( u ) F − t − F − − F − = u = F − + F + , |F ′ ( u ) | ≤ 1 − c. x 2 1+ F ( u ) F + − F + − F + = x t 2 (19) x = f ± , F ± Let F ± = g ± , so that (same for g ± ) t � 2 f − + 1 − λ f − − 1+ λ t − f − 2 f + = x λ ( u ) = F ′ ( u ) . (20) f + + f + 2 f − − 1 − λ 1+ λ 2 f + = x t 23
Interaction of the same family Consider the 2 × 2 system 1 −F ( u ) F − t − F − − F − = u = F − + F + , |F ′ ( u ) | ≤ 1 − c. x 2 1+ F ( u ) F + − F + − F + = x t 2 (19) x = f ± , F ± Let F ± = g ± , so that (same for g ± ) t � 2 f − + 1 − λ f − − 1+ λ t − f − 2 f + = x λ ( u ) = F ′ ( u ) . (20) f + + f + 2 f − − 1 − λ 1+ λ 2 f + = x t Construct a functional which bounds � + ∞ � R | f − ( t, x ) g + ( t, x ) − g − ( t, x ) f + ( t, x ) | dxdt. 0 23
We can rewrite the integrand as , 24
We can rewrite the integrand as f − g + − g − f + = , 24
We can rewrite the integrand as � � f − + g + − g − f − g + − g − f + = f − f + , f + 24
We can rewrite the integrand as � � + F + − F − f − + g + − g − f − g + − g − f + = f − f + = F − x F + t t , x F − f + F + x x 24
We can rewrite the integrand as � � + F + − F − f − + g + − g − f − g + − g − f + = f − f + = F − x F + t t , x F − f + F + x x = strengths of waves × difference in speed . 24
We can rewrite the integrand as � � + F + − F − f − + g + − g − f − g + − g − f + = f − f + = F − x F + t t , x F − f + F + x x = strengths of waves × difference in speed . This is not a Glimm functional, it is the interaction Remark. term. 24
We can rewrite the integrand as � � + F + − F − f − + g + − g − f − g + − g − f + = f − f + = F − x F + t t , x F − f + F + x x = strengths of waves × difference in speed . This is not a Glimm functional, it is the interaction Remark. term. Since it holds g − + g + = f − − f + , the condition g − /f − = g + /f + implies that the solution is a travelling profile, replacing σ x = 0. 24
We can rewrite the integrand as � � + F + − F − f − + g + − g − f − g + − g − f + = f − f + = F − x F + t t , x F − f + F + x x = strengths of waves × difference in speed . This is not a Glimm functional, it is the interaction Remark. term. Since it holds g − + g + = f − − f + , the condition g − /f − = g + /f + implies that the solution is a travelling profile, replacing σ x = 0. For simplicity we assume in the following λ = 0. 24
Recommend
More recommend