bsm constraints from sm measurements with contur
play

BSM constraints from SM measurements with Contur David Yallup - - PowerPoint PPT Presentation

BSM constraints from SM measurements with Contur David Yallup - dyallup @ cern.ch March 17, 2019 Rencontres de Moriond: Electroweak Interactions and Unified Theories LHC Results - Measuring the known Status: Standard Model Production Cross


  1. BSM constraints from SM measurements with Contur David Yallup - dyallup @ cern.ch March 17, 2019 Rencontres de Moriond: Electroweak Interactions and Unified Theories

  2. LHC Results - Measuring the known Status: Standard Model Production Cross Section Measurements � L dt July 2018 Reference [fb − 1 ] pp 50 × 10 − 8 PLB 761 (2016) 158 8 × 10 − 8 Nucl. Phys. B, 486-548 (2014) ATLAS Preliminary 3.2 JHEP 09 (2017) 020 Jets R=0.4 20.2 JHEP 09 (2017) 020 4.5 JHEP 02, 153 (2015) Observation 1: No convincing Run 1,2 √ s = 7,8,13 TeV 3.2 JHEP 09 (2017) 020 Dijets R=0.4 4.5 JHEP 05, 059 (2014) 3.2 PLB 2017 04 072 γ 20.2 JHEP 06 (2016) 005 excess from ATLAS/CMS 4.6 PRD 89, 052004 (2014) 0.081 PLB 759 (2016) 601 W 4.6 EPJC 77 (2017) 367 3.2 JHEP 02 (2017) 117 searches so far Z 20.2 JHEP 02 (2017) 117 4.6 JHEP 02 (2017) 117 3.2 PLB 761 (2016) 136 Theory t¯ t 20.2 EPJC 74: 3109 (2014) 4.6 EPJC 74: 3109 (2014) 3.2 JHEP 04 (2017) 086 LHC pp √ s = 7 TeV t t − chan (tot.) 20.3 EPJC 77 (2017) 531 4.6 PRD 90, 112006 (2014) Observation 2: Many precision t s − chan (tot.) 20.3 PLB 756, 228-246 (2016) Data 3.2 JHEP 01 (2018) 63 Wt stat 20.3 JHEP 01, 064 (2016) 2.0 PLB 716, 142-159 (2012) stat ⊕ syst tZj 36.1 PLB 780 (2018) 557 measurements of SM quantities LHC pp √ s = 8 TeV 3.2 PLB 773 (2017) 354 WW (tot.) 20.3 PLB 763, 114 (2016) 4.6 PRD 87, 112001 (2013) Data 36.1 ATLAS-CONF-2018-034 made [ATLAS SM summary plots] WZ (tot.) 20.3 PRD 93, 092004 (2016) stat 4.6 EPJC 72, 2173 (2012) stat ⊕ syst 36.1 PRD 97 (2018) 032005 ZZ (tot.) JHEP 01, 099 (2017) LHC pp √ s = 13 TeV 20.3 JHEP 03, 128 (2013) 4.6 PRD 95 (2017) 112005 20.2 γγ JHEP 01, 086 (2013) 4.9 Data Observation 3: With public W γ PRD 87, 112003 (2013) 4.6 stat PRD 93, 112002 (2016) 20.3 Z γ PRD 87, 112003 (2013) stat ⊕ syst 4.6 EPJC 77 (2017) 563 [hep-ex] 20.2 WV JHEP 01, 049 (2015) tools we can calculate these 4.6 EPJC 77 (2017) 40 3.2 t¯ tW (tot.) JHEP 11, 172 (2015) 20.3 EPJC 77 (2017) 40 3.2 t¯ tZ (tot.) quantities within the SM OR 20.3 JHEP 11, 172 (2015) t¯ 20.2 JHEP 11 (2017) 086 t γ 4.6 PRD 91, 072007 (2015) 20.2 EPJC 77 (2017) 474 Wjj EWK 4.7 EPJC 77 (2017) 474 BSM - Contur [arXiv:1606.05296] 3.2 PLB 775 (2017) 206 Zjj EWK 20.3 JHEP 04, 031 (2014) Z γγ 20.3 PRD 93, 112002 (2016) W γγ 20.3 PRL 115, 031802 (2015) WW γ 20.2 EPJC 77, 646 (2017) Z γ jj EWK 20.3 JHEP 07 (2017) 107 36.1 ATLAS-CONF-2018-030 W ± W ± jj EWK 20.3 PRD 96, 012007 (2017) 36.1 ATLAS-CONF-2018-033 WZjj EWK 20.3 PRD 93, 092004 (2016) 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 data/theory 2

  3. Extract limits from Encode BSM physics fundamental parameters Analytic perturbative e.g. EW precision fi t calculation Hadronisation etc. Anti-kT jet Parton shower Contur Extract limits from Build particle level "composite" parameters Phenomenological quantities e.g. N-jet cross section modelling Typical experiment Geant4 simulation recast work fl ow R e c o n s t r u c t i o Extract limits from n Build detector level Material simulated events simulation quantities calorimeter jet Anti-kT Contur [1606.05296] - a recent application [1811.11452] 3

  4. A recent Contur application Recent study: Gauged B − L model at the LHC, [1811.11452] • Heavy neutrinos, vector bosons, extended Higgs sector • Non-trivial model dynamics in 6D parameter space, challenge to recast Scenario M Z ′ [GeV] g ′ M h 2 [GeV] sin α M N i 1 [ 1 , 10 4 ] [ 3 × 10 − 5 , 0 . 6 ] A M Z ′ / (2 g ′ 1 ) 0 M Z ′ / 5 [ 1 , 10 4 ] [ 3 × 10 − 5 , 0 . 6 ] M Z ′ / (2 g ′ B 1 ) 0 . 2 M Z ′ / 5 [ 1 , 10 4 ] [ 3 × 10 − 5 , 0 . 6 ] C 200 0 . 2 M Z ′ / 5 D 7000 0 . 2 [ 0 , 800 ] [ 0 , 0 . 7 ] M Z ′ / 5 10 − 3 E 35 [ 0 , 800 ] [ 0 , 0 . 7 ] M Z ′ / 5 Table: Benchmark scenarios used in our analysis. In addition, the active-sterile neutrino mixing is fixed as V lN � = 0 . 1 eV /M N , independent of the generation of the heavy neutrino. 4

  5. Building a particle level exclusion Di ff erential Zjj cross section in baseline region, ATLAS 8 TeV 20.3 fb -1 10 − 1 10 − 2 1 g ′ 10 − 3 10 − 4 Data from ATLAS 8TeV EW Z Production [1401.7610] 10 0 10 1 10 2 10 3 10 4 • Particle level simulation from [Feynrules] and [Herwig7] M Z ′ [GeV] • Fid. def and data via [Rivet], statistical fit via [Contur] Combine with all data exclusion from ATLAS 8TeV Z+Jets measurements O(100) Analyses available in Rivet, O(1000) observables (bins) to fit to in Contur Other interesting signatures in this plane: Drell Yan, ZZ, Z γ , WW 5

  6. Full example scan - Scenario C Contur 1 . 0 Perturbativity 10 − 1 ν Scattering 0 . 8 10 − 2 0 . 6 CL s 1 g ′ 0 . 4 10 − 3 0 . 2 10 − 4 0 . 0 10 1 10 3 10 1 10 3 M Z ′ [GeV] M Z ′ [GeV] 95% (Yellow) and 68% (Green) confidence excluded Heatmap of underlying CL calculated at the sampled points. contours using all analyses, Scenario C. 6

  7. Conclusion • Particle level measurements of SM processes form a robust and wide net of measured parameters to confront BSM Leptophobic DM B-L Gauged physics with • Toolset introduced can demonstrate interesting phenomenological results → SM particle level measurements can tell us interesting and unexpected things about new physics Leptophilic DM Light Scalars Thanks for listening! Various models surveyed, Kruger2018 proceedings [1902.03067] Library of results and further documentation, [Contur hepforge] 7

Recommend


More recommend