brown rho scaling in the strong coupling lattice qcd
play

Brown-Rho Scaling in the Strong Coupling Lattice QCD Akira Ohnishi - PowerPoint PPT Presentation

Brown-Rho Scaling in the Strong Coupling Lattice QCD Akira Ohnishi (YITP) in collaboration with K. Miura (Frascati), T.Z. Nakano (YITP & Kyoto U.) and N. Kawamoto (Hokkaido U.) Introduction Chiral Condensate and Polyakov loop in SC-LQCD


  1. Brown-Rho Scaling in the Strong Coupling Lattice QCD Akira Ohnishi (YITP) in collaboration with K. Miura (Frascati), T.Z. Nakano (YITP & Kyoto U.) and N. Kawamoto (Hokkaido U.) Introduction Chiral Condensate and Polyakov loop in SC-LQCD Meson masses in SCL-LQCD Summary Hadron Mass AO, N. Kawamoto, K. Miura, Mod. Phys. Lett. A 23 (2008), 2459. 1/d effects N. Kawamoto, K. Miura, AO, T. Ohnuma, PRD 75 (2007), 014502. NLO (1/g 2 ) K. Miura, T. Z. Nakano and AO, PTP 122 (2009), 1045. K. Miura, T. Z. Nakano, AO, N. Kawamoto, PRD 80 (2009), 074034. NNLO (1/g 4 ) T. Z. Nakano, K. Miura, AO, PTP 123 (2010), 825. NNLO + Polyakov loop T. Z. Nakano, K. Miura, AO, PRD 83 (2011), 016014. 1 Ohnishi, Dense 2011, 4/21.

  2. Hadron Mass in Nuclear Matter Medium meson mass modification may be the signal of partial restoration of chiral sym. Brown, Rho, PRL66('91)2720; Kunihiro,Hatsuda, PRep 247('94),221; Hatsuda, Lee, PRC46('92)R34. Brown-Rho scaling ( 20-th year anniversary ) ∗ / M N = M  ∗ / M  = M  ∗ / M  = M  ∗ / M  = f  ∗ / f  M N and is suggested experimentally. CERES Collab., PRL75('95),1272; PHENIX Collab., arXiv:0706.3034; KEK-E325 Collab.(Ozawa et al.), PRL86('01),5019. KEK-E325 NJL PHENIX W. Weise, Nucl. Phys. A 553 (1993) 59c 2 Ohnishi, Dense 2011, 4/21.

  3. Hadron Mass in QCD Lattice QCD Asakawa, Nakahara, Hatsuda, NPA715(03)863[hep-lat/0208059]. → Succcessful at μ=0, Sign prob. at finite μ M. Asakawa, T. Hatsuda, Y. Nakahara ('03); G. Aarts, Foley ('07, DW). QCD sum rule → Condensates have to be given. Hatsuda, Lee, PRC46('92)R34.; Gubler, Oka, Morita, Strong Coupling Lattice QCD (SC-LQCD) G. Aarts, J. Foley (UKQCD), Hadron masses in vacuum JHEP 0702('07)062. [DW QCD, PS (T=0)] (Strong Coupling Limit (1/g 2 → 0)) Kluberg-Stern, Morel, Petersson, '83; Kawamoto, Shigemoto, '82. To do: Finite (T, μ), 1/g 2 corr., ... We discuss meson masses at finite (T, μ) We discuss meson masses at finite (T, μ) in SCL-LQCD. (AO, Miura, Kawamoto, 2008) in SCL-LQCD. (AO, Miura, Kawamoto, 2008) 3 Ohnishi, Dense 2011, 4/21.

  4. Chiral condensate and Polyakov loop Chiral condensate and Polyakov loop in Strong Coupling Lattice QCD in Strong Coupling Lattice QCD 4 Ohnishi, Dense 2011, 4/21.

  5. Strong Coupling Lattice QCD Lattice QCD=ab initio, non-perturbative theory + χ χ U μ U μ + U ν U ν M= χ χ χ U μ + χ U μ Strong Coupling Lattice QCD 1/g 2 << 1 → perturbative treatment of plaquetts Effective action of color singlet objects (Mesons, Baryons, Loops) Great successes in pure YM Area law (Wilson), Strong and weak coupling (Creutz), Character expansion to higher orders (Munster), … Chiral transition at finite T and μ: → mainly discussed in the Strong Coupling Limit (g → ∞) Kawamoto, Damgaard, Shigemoto; Bilic, Karsch, Redlich; Fukushima; Nishida, Fukushima, Hatsuda; … → NLO, NNLO, and Polyakov loop effects in SC-LQCD 5 Ohnishi, Dense 2011, 4/21.

  6. Chiral Condensate and Polyakov loop in SC-LQCD NJL PNJL W. Weise, NPA553('93)59c P-SC-LQCD K. Fukushima, PRD77('08)114028 (NNLO) SC-LQCD P-SC-LQCD (NLO) Quarkyonic Miura,Nakano, AO, Kawamoto Nakano, Miura, Ohnishi, Nakano, Miura, AO, PoS Lat2010, 202; in prep. PTP123('10)825 PRD83('11)016014 Qualitatively good in condensates. How about hadron masses ? Qualitatively good in condensates. How about hadron masses ? 6 Ohnishi, Dense 2011, 4/21.

  7. Meson masses in SCL-LQCD Meson masses in SCL-LQCD 7 Ohnishi, Dense 2011, 4/21.

  8. Strong Coupling Limit of Lattice QCD Finite T tratment Damgaard, Kawamoto, Shigemoto, 1984. χ χ U μ + U μ → Exact temporal link integral 1 + U ν U ν followed by spatial link integral, 2 g χ U μ + χ U μ bosonization, and Fermion det. dU QCD Lattice Action (staggered Fermion) V M S LQCD = ∑  D   m 0 ∑ Strong    x  x  S G     Coupling  x Limit  D  = 1 − 1  +  x     , x  2 ∑   x U  , x  x    −  , x  x    U  , x   σ x Spatial link integral + Bosonization e    U 0  S eff = 1 − 1  2  V M  D t  m q   m q = m 0  d  ,dU 0 Spatial hopping Temporal hopping δσ Decomposition (σ= σ + δσ)+ Fermion & U 0 integral σ  1 d N  F eff   2 ∑ − 1 [ k ] 2 S eff = L G  k  δσ k 8 Ohnishi, Dense 2011, 4/21.

  9. Strong Coupling Limit of Lattice QCD Effective Potential Fukushima (’04), Nishida ('04) F eff = N c 2  V eff    ,T ,  d  V eff =− T log [  2cosh  N c / T  ] sinh  N c  1  E q / T   E q  m = arcsinh m  sinh  E q / T  Meson propagator Meson self-energy comes from the quark determinant, whose derivative (minor det.) is obtained from recursion relation. Faldt, Petersson ('86) 2 V eff ∂ − 1  k , = V M − 1  k  F.T. G ∂ m ∂ m  '  exp − V eff / T = ∫ dU 0 ∣ I N ∣  − U  I 1 e 0 e −  − e I 2 e  I k = k  m 0  −  − e 0 I 3 e ⋮ ⋱  U − − e − e 9 Ohnishi, Dense 2011, 4/21.

  10. Prescriptions related to lattice staggered fermions Mass = Pole energy of G at “zero” momentum “Zero” momentum: k = - k (vector) → k = (0,0,0), (0,0,π), (0, π, 0) d  k = ∑ cos k j =− 3, − 1,1,3 for zero momentum  k =− k  j = 1 Four different types of meson appear ! (Bound state with doubler) “Zero” Euclidean energy: ω= -ω → ω = 0 or π → Search for the pole with ( k , ω)= (δ π , δ π , δ π , i M +δ π ) (δ π =0 or π)     m 0  − 1  k = ' 0 ' , = i M = 2 N c   4 N c  = 0 G d ± cosh M  cosh 2 E q 10 Ohnishi, Dense 2011, 4/21.

  11. Hadron Mass in SCL-LQCD (Finite T) AO, N. Kawamoto, K. Miura, Mod. Phys. Lett. A 23 (2008)2459. Meson Mass − 1  k , = 2 N c  k  4 N c   m 0   G d cos  cosh2 E q d  k = ∑ cos k i  =− d, − d  2,... d i = 1 M = 2 arcsinh   m 0    m 0  d     d Equilibrium condition: ∂ V eff /∂σ = -2 N c σ/ d → Meson masses are determined by the chiral condensate, σ. Chiral condensate is a function of (T, μ). → Approximate Brown-Rho scaling emerges in SCL-LQCD Many eservations: SCL-LQCD, LO in 1/d expansion, staggered fermion, mean field app. (no feed back of fluc.), .... 11 Ohnishi, Dense 2011, 4/21.

  12. Medium Modification of Meson Masses Scale fixing Search for σ vac to minimize free E. Assign κ=-3, -1 as π and ρ Determine m 0 and a -1 (lattice unit) to fit m π /m ρ (a=497 MeV) Medium modification Search for σ(T, μ) → Meson mass Vacuum mass ~ Zero T results Kluberg-Stern, Morel, Petersson, 1982; Kawamoto, Shigemoto, 1982 12 Ohnishi, Dense 2011, 4/21.

  13. Summary Chiral condensates and Polyakov loop at finite T and μ are investigated with SC-LQCD. Partial restoration of χ sym. is expected at finite T and/or μ in SC-LQCD and P-SC-LQCD. Qualitative behavior is similar to NJL and PNJL results. Quantitative differences to be further discussed → T c and μ c , Density gap at finite μ,Critical point, .... Meson masses at finite T and μ are studied in SCL-LQCD. Results with mean field approx. shows Brown-Rho scaling behavior. Loop effects of mesons are expected m 2 to enhance meson masses after χ restoration with Loops Hatsuda, Kunihiro / Kapusta text book Finite coupling effects and self-consistent T 2 treatment (SD type) would be interesting. MF 13 Ohnishi, Dense 2011, 4/21.

  14. Homework: Can we do it ? Present treatment + = Self-consistent treatment + = + = Is it possible to carry out the self-consistent calculation Is it possible to carry out the self-consistent calculation of meson and quark propagator in SC-LQCD of meson and quark propagator in SC-LQCD hopefully with NLO/NNLO/PL effects (in two weeks) ? hopefully with NLO/NNLO/PL effects (in two weeks) ? 14 Ohnishi, Dense 2011, 4/21.

  15. Thank you ! 15 Ohnishi, Dense 2011, 4/21.

Recommend


More recommend