boosting performance of carbon supported pt catalysts for
play

Boosting Performance of Carbon Supported Pt Catalysts for Fuel Cell - PowerPoint PPT Presentation

Boosting Performance of Carbon Supported Pt Catalysts for Fuel Cell Catalysis through Ionic Liquid Modifications Electrochemistry 2016, GOSLAR, SEPTEMBER 26 28, 2016 Gui-Rong Zhang, 1,2 Macarena Munoz, 2 Bastian J.M. Etzold 1,2 1


  1. Boosting Performance of Carbon Supported Pt Catalysts for Fuel Cell Catalysis through Ionic Liquid Modifications Electrochemistry 2016, GOSLAR, SEPTEMBER 26 – 28, 2016 Gui-Rong Zhang, 1,2 Macarena Munoz, 2 Bastian J.M. Etzold 1,2 1 Ernst-Berl-Institut für Technische und Makromolekular Chemie Techniche Universität Darmstadt 2 Lehrstuhl für Chemische Reaktionstechnik (CRT) Friedrich-Alexander-Universität Erlangen-Nürnberg 23.11.17 | 07 Chemie | Ernst-Berl-Institut für Technische und Makromolekulare Chemie | Prof. BJM Etzold | 1

  2. Research Background A fuel cell is a device that directly converts the chemical energy into electricity Scheme of a fuel cell device Ø Broad based applications of low temperature fuel cell technology is restricted by the its high cost 23.11.17 | 07 Chemie | Ernst-Berl-Institut für Technische und Makromolekulare Chemie | Prof. BJM Etzold | 2

  3. Research Background Research Background Ø Numerous efforts have ever been made to improve the Pt activity for ORR, mainly by engineering the structures of electrocatalysts. 23.11.17 | 07 Chemie | Ernst-Berl-Institut für Technische und Makromolekulare Chemie | Prof. BJM Etzold | 3

  4. Modifying Pt/C catalyst with Ionic Liquids for Oxygen Reduction Reaction Solid Catalyst with Ionic Liquid Layer Pt (SCILL) Concept Pt Synthetic strategy Materials IL & solvent u State of the art catalyst 20 wt-% Pt/C (JM) u Hydrophobic ionic liquid catalyst [MTBD] + [NTf 2 ] - 23.11.17 | 07 Chemie | Ernst-Berl-Institut für Technische und Makromolekulare Chemie | Prof. BJM Etzold | 4

  5. Structural Analysis Transmission Electron Microscopy No observable change in Pt NP size after IL modification 23.11.17 | 07 Chemie | Ernst-Berl-Institut für Technische und Makromolekulare Chemie | Prof. BJM Etzold | 5

  6. Cyclic Voltammetry Measurements Pt/C-fresh Pt/C-SCILL-2 u Determination of Electrochemically Active Surface Area (EAS) Pt* + H + + e - Pt-H ad u Determination of surface coverage of oxygenated species on Pt ( θ OH ) Pt-OH ad + H 3 O + + e - 2H 2 O + Pt* 0.1 M HClO 4 , 20 mV s -1 , room temperature, IL = [MTBD][NTf 2 ] 23.11.17 | 07 Chemie | Ernst-Berl-Institut für Technische und Makromolekulare Chemie | Prof. BJM Etzold | 6

  7. Cyclic Voltammetry Measurements Pt/C-fresh Pt/C-SCILL-100 u Determination of Electrochemically Active Surface Area (EAS) Pt* + H + + e - Pt-H ad u Determination of surface coverage of oxygenated species on Pt ( θ OH ) Pt-OH ad + H 3 O + + e - 2H 2 O + Pt* 0.1 M HClO 4 , 20 mV s -1 , room temperature, IL = [MTBD][NTf 2 ] 23.11.17 | 07 Chemie | Ernst-Berl-Institut für Technische und Makromolekulare Chemie | Prof. BJM Etzold | 7

  8. Cyclic Voltammetry Measurements Pt/C-fresh Pt/C-SCILL-100 Ø The electrochemically active surface area reduced approx. by 19 %. 0.1 M HClO 4 , 20 mV s -1 , room temperature, IL = [MTBD][NTf 2 ] 23.11.17 | 07 Chemie | Ernst-Berl-Institut für Technische und Makromolekulare Chemie | Prof. BJM Etzold | 8

  9. Oxygen Reduction Reaction Ø Half wave potential shifts pronounced by 18 mV 0.1 M HClO 4 , 10 mV s -1 , 1600 rpm, room temperature, [MTBD][NTf 2 ] G.R. Zhang, M. Munoz, B.J.M. Etzold, ACS Appl. Mater. Interfaces , 2015 , 7 , 3562; 23.11.17 | 07 Chemie | Ernst-Berl-Institut für Technische und Makromolekulare Chemie | Prof. BJM Etzold | 9 G.R. Zhang, B.J.M. Etzold, J. Energy Chem. , 2016 , 25 , 199.

  10. Oxygen Reduction Reaction Ø Above 50 % degree of pore filling: mass transfer limitation 0.1 M HClO 4 , 10 mV s -1 , 1600 rpm, room temperature, [MTBD][NTf 2 ] 23.11.17 | 07 Chemie | Ernst-Berl-Institut für Technische und Makromolekulare Chemie | Prof. BJM Etzold | 10

  11. ORR Pathways Ø The mole fraction of H 2 O 2 formed during ORR is lower than 3% for both samples 23.11.17 | 07 Chemie | Ernst-Berl-Institut für Technische und Makromolekulare Chemie | Prof. BJM Etzold | 11

  12. Reason for activity increase: O 2 solubility? O 2 solubility Cation Anion O 2 solubility (mM) matters? [MTBD][NTf 2 ] 2.2 [MTBD][Beti] 2.9 Ø Similar volcano dependent behaviour of Pt activity on pore filling, with the maximum activity obtained at α = 50% Ø Pt activity towards ORR is not sensitive to the O 2 solubility in ILs . ORR conditions: 0.1 M HClO 4 , 10 mV s -1 , 1600 rpm, room temperature 23.11.17 | 07 Chemie | Ernst-Berl-Institut für Technische und Makromolekulare Chemie | Prof. BJM Etzold | 12

  13. Engineering IL cation Cation Anion O 2 solubility (mM) [MTBD][NTf 2 ] 2.2 Cation Anion O 2 solubility (mM) [C 4 C 1 im][NTf 2 ] 2.3 G.R. Zhang et al. Angew. Chem. Int. Ed. 55 , 2257 (2016) 23.11.17 | 07 Chemie | Ernst-Berl-Institut für Technische und Makromolekulare Chemie | Prof. BJM Etzold | 13 23.11.17 | 07 Chemie | Ernst-Berl-Institut für Technische und Makromolekulare Chemie | Prof. BJM Etzold | 13 13

  14. Cyclic Voltammetry Measurements Ø The presence of [C 4 C 1 im][NTf 2 ] imposes little effect on the EAS, while reduces the coverage of oxygenated species on Pt from 34.0% to 17.6%. 0.1 M HClO 4 , 20 mV s -1 , room temperature 23.11.17 | 07 Chemie | Ernst-Berl-Institut für Technische und Makromolekulare Chemie | Prof. BJM Etzold | 14

  15. Oxygen Reduction Reaction Ø Pt/C-[C4C1im][NTf2] exhibited the highest activity towards ORR, which is three times more active than the pristine Pt/C 0.1 M HClO 4 , 10 mV s -1 , 1600 rpm, room temperature, [C 4 C 1 im][NTf 2 ] 23.11.17 | 07 Chemie | Ernst-Berl-Institut für Technische und Makromolekulare Chemie | Prof. BJM Etzold | 15

  16. Origin of the boosting effect of IL on ORR-hydrophobicity O 2 -satureated N 2 -saturated Ø Reaction media Ø Reaction product Ø Source of catalyst poisons Pt-OH ad + H 3 O + + e - 2H 2 O + Pt* Pt/C-SCILL Pt/C-fresh 23.11.17 | 07 Chemie | Ernst-Berl-Institut für Technische und Makromolekulare Chemie | Prof. BJM Etzold | 16

  17. Origin of the boosting effect of IL on ORR Ø The IL would selectively locate at the “defect” sites, and suppresses the surface oxidation of Pt G.R. Zhang, M. Munoz, B.J.M. Etzold, Angew. Chem. Int. Ed. 2016, 55, 2257 23.11.17 | 07 Chemie | Ernst-Berl-Institut für Technische und Makromolekulare Chemie | Prof. BJM Etzold | 17

  18. Summary § The introduction of IL could significantly improve the Pt activity and stability for ORR. § The boosting effect is not sensitive to the O 2 O 2 solubility solubility in IL, but dependent on the pore filling and geometric structures of ILs. § The boosting effect would come from the hydrophobicity conveyed by ILs, which would “Poisonous” water help prevent surface “poisoning” of Pt by H 2 O. § SCILL concept: a new strategy to improve the performance of electrocatalysts for fuel cells. Hydrophobicity 23.11.17 | 07 Chemie | Ernst-Berl-Institut für Technische und Makromolekulare Chemie | Prof. BJM Etzold | 18

  19. Acknowledgement Prof. Peter Wasserscheid Prof. Bastian Etzold Dr. Marco Haumann Dr. Macarena Munoz Dr. Nicola Taccardi Thomas Wolker Teguh Ariyanto Johannes Landwehr Jan Gläsel This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement n° 681719) 23.11.17 | 07 Chemie | Ernst-Berl-Institut für Technische und Makromolekulare Chemie | Prof. BJM Etzold | 19

Recommend


More recommend