bipartite subfamilies of planar graphs
play

Bipartite subfamilies of planar graphs Juanjo Ru e Instituto de - PowerPoint PPT Presentation

Bipartite subfamilies of planar graphs Juanjo Ru e Instituto de Ciencias Matem aticas, Madrid Journ ee-s eminaire de Combinatoire CALIN, Paris Nord The material of this talk 1 . Background 2 . Graph decompositions. First


  1. Bipartite subfamilies of planar graphs Juanjo Ru´ e Instituto de Ciencias Matem´ aticas, Madrid Journ´ ee-s´ eminaire de Combinatoire CALIN, Paris Nord

  2. The material of this talk 1 . − Background 2 . − Graph decompositions. First results 3 . − The bipartite framework

  3. Background

  4. Objects: graphs Labelled Graph = labelled vertices+edges . Unlabelled Graph = labelled one up to permutation of labels . Simple Graph = NO multiples edges, NO loops . 2 1 3 1 1 2 3 2 3 2 3 1 Question : How many graphs with n vertices are in the family?

  5. The counting series Strategy : Encapsulate these numbers → Counting series ◮ Labelled framework: exponential generating functions ∑ ∑ x | a | |A n | n ! x n A ( x ) = | a | ! = a ∈A n ≥ 0 ◮ Unlabelled framework: cycle index sums ∑ ∑ 1 s c 1 1 s c 2 2 · · · s c n Z A ( s 1 , s 2 , . . . ) = n , n ! n ≥ 0 ( σ,g ) ∈ S n ×A n σ · g = g ∑ A ( x ) = Z A ( x, x 2 , x 3 , . . . ) = � | � A n | x n . n ≥ 0

  6. The symbolic method COMBINATORIAL RELATIONS between CLASSES ↕⇕↕ EQUATIONS between GENERATING FUNCTIONS Class Labelled setting Unlabelled setting C ( x ) = � � A ( x ) + � C = A ∪ B C ( x ) = A ( x ) + B ( x ) B ( x ) C ( x ) = � � A ( x ) · � C = A × B C ( x ) = A ( x ) · B ( x ) B ( x ) ( ∑ ) � i � 1 B ( x i ) C = Set( B ) C ( x ) = exp( B ( x )) C ( x ) = exp i ≥ 1 C ( x ) = Z A ( � � B ( x ) , � B ( x 2 ) , . . . ) C = A ◦ B C ( x ) = A ( B ( x ))

  7. Singularity analysis on generating functions GFs: analytic functions in a neighbourhood of the origin. The smallest singularity of A ( z ) determines the asymptotics of the coefficients of A ( z ) . ◮ POSITION: exponential growth ρ . ◮ NATURE: subexponential growth ◮ Transfer Theorems: Let α / ∈ { 0 , − 1 , − 2 , . . . } . If A ( z ) = a · (1 − z/ρ ) − α + o ((1 − z/ρ ) − α ) then a Γ( α ) · n α − 1 · ρ − n (1 + o (1)) a n = [ z n ] A ( z ) ∼

  8. Our starting point Asymptotic enumeration and limit laws of planar graphs (Gim´ enez, Noy) g 1 · n − 7 / 2 · γ n 1 · n ! · (1 + o (1)) Asymptotic enumeration and limit laws of series-parallel graphs (Bodirsky, Gim´ enez, Kang, Noy) g 2 · n − 5 / 2 · γ n 2 · n ! · (1 + o (1))

  9. Our starting point Asymptotic enumeration and limit laws of planar graphs [Gim´ enez, Noy] g 1 · n − 7 / 2 · γ n 1 · n ! · (1 + o (1)) Asymptotic enumeration and limit laws of series-parallel graphs [Bodirsky, Gim´ enez, Kang, Noy] g 2 · n − 5 / 2 · γ n 2 · n ! · (1 + o (1))

  10. Our starting point g 1 · n − 7 / 2 · γ n 1 · n ! · (1 + o (1)) g 2 · n − 5 / 2 · γ n 2 · n ! · (1 + o (1)) � THE SUBEXPONENTIAL TERM GIVES THE “PHYSICS” OF THE GRAPHS ⇕ GENERAL FRAMEWORK TO UNDERSTAND THIS EXPONENT

  11. Graph decompositions. First results

  12. General graphs from connected graphs Let C be a family of connected graphs. G : graphs such that their connected components are in C . G = Set( C ) = ⇒ G ( x, y ) = exp( C ( x, y ))

  13. General graphs from connected graphs Let C be a family of connected graphs. G : graphs such that their connected components are in C . G = Set( C ) = ⇒ G ( x ) = exp( C ( x ))

  14. Connected graphs from 2-connected graphs Let B be a family of 2-connected graphs. C : connected graphs with blocks in B . In other words, a vertex-rooted connected graph is a tree of 2-connected blocks. C o = v × Set( B o ( v ← C o )) = ⇒ xC ′ ( x ) = x exp B ′ ( xC ′ ( x ))

  15. Connected graphs from 2-connected graphs Let B be a family of 2-connected graphs. C : connected graphs with blocks in B . In other words, a vertex-rooted connected graph is a tree of 2-connected blocks. C • = v × SET( B o ( v ← C • )) = ⇒ xC ′ ( x ) = x exp B ′ ( xC ′ ( x ))

  16. Connected graphs from 2-connected graphs A vertex-rooted connected graph is a tree of rooted blocks. C • = v × Set( B ′ ( v ← C • )) = ⇒ C • ( x ) = x exp B ′ ( C • ( x ))

  17. 2-connected graphs from 3-connected graphs Decomposition in 3-connected components is slightly harder. Let T be a family of 3-connected graphs: T ( x, z ). We define B as those 2-connected graphs such that can be obtained from series , parallel , and T -compositions. ( xD 2 ) 1 ∂T D ( x, y ) = (1 + y ) exp 1 + xD + ∂z ( x, D ) − 1 2 x 2 ( 1 + D ( x, y ) ) ∂y ( x, y ) = x 2 ∂B 2 1 + y D is the GF for networks (essentially edge-rooted 2-connected graphs without the edge root).

  18. A set of equations ( 1 + D )  xD 2 1 ∂T   ∂z ( x, D ) − log + 1 + xD = 0  2 x 2 D 1 + y ( 1 + D ( x, y ) ) ∂y ( x, y ) = x 2  ∂B   2 1 + y  ( ) C • ( x ) = x exp B ′ ( C • ( x ))   G ( x ) = exp( C ( x ))

  19. Examples of families & excluded minors (I) ◮ Series-parallel graphs ◮ Excluded minors: ◮ T : None. ◮ T ( x, z ) = 0 . ◮ Planar graphs ◮ Excluded minors: ◮ T : 3-connected planar graphs. ◮ T ( x, z ) : The number of labelled 2-connected planar graphs (Bender, Gao, Wormald, 2002)

  20. Examples of families & excluded minors (II) ◮ W 4 -free ◮ Excluded minors: ◮ T : ◮ T ( x, z ) = 1 4! x 4 z 6 . ◮ K − 5 -free ◮ Excluded minors: ◮ T : , . . . ( log(1 − xz 2 ) + 2 xz 2 + x 2 z 4 ) 6! x 6 z 9 − 1 ◮ T ( x, z ) = 70 2 x .

  21. Examples of families & excluded minors (III) ◮ K 3 , 3 -free (Gerke, Gim´ enez, Noy, Weibl, 2006) ◮ Excluded minors: ◮ 3-connected components: , 3-connected planar graphs. ◮ T ( x, z ) = . . . . ◮ If G = Ex( M ) and all the excluded minors M are 3-connected, then G can be expressed in terms of its 3-connected graphs.

  22. RESULT: asymptotic enumeration If either ∂T ∂z ( x, z ) ◮ has no singularity, or ◮ the singularity type is (1 − z/z 0 ) α with α < 1, then the situation is alike to the series-parallel case : d n ∼ d · n − 3 / 2 · x − n D ( x ) ∼ d · (1 − x/x 0 ) 1 / 2 · n ! 0 b n ∼ b · n − 5 / 2 · x − n B ( x ) ∼ b · (1 − x/x 0 ) 3 / 2 · n ! 0 c n ∼ c · n − 5 / 2 · ρ − n · n ! C ( x ) ∼ c · (1 − x/ρ ) 3 / 2 g n ∼ g · n − 5 / 2 · ρ − n · n ! G ( x ) ∼ g · (1 − x/ρ ) 3 / 2

  23. RESULT: asymptotic enumeration (II) If ∂T ∂z ( x, z ) has singularity type (1 − z/z 0 ) 3 / 2 , then 3 different situations may happen. Case 1 ( Planar case ) d n ∼ d · n − 5 / 2 · x − n D ( x ) ∼ d · (1 − x/x 0 ) 3 / 2 · n ! 0 b n ∼ b · n − 7 / 2 · x − n B ( x ) ∼ b · (1 − x/x 0 ) 5 / 2 · n ! 0 c n ∼ c · n − 7 / 2 · ρ − n · n ! C ( x ) ∼ c · (1 − x/ρ ) 5 / 2 g n ∼ g · n − 7 / 2 · ρ − n · n ! G ( x ) ∼ g · (1 − x/ρ ) 5 / 2

  24. RESULT: asymptotic enumeration (II) If ∂T ∂z ( x, z ) has singularity type (1 − z/z 0 ) 3 / 2 , then 3 different situations may happen. Case 2 ( Series-parallel case ) d n ∼ d · n − 3 / 2 · x − n D ( x ) ∼ d · (1 − x/x 0 ) 1 / 2 · n ! 0 b n ∼ b · n − 5 / 2 · x − n B ( x ) ∼ b · (1 − x/x 0 ) 3 / 2 · n ! 0 c n ∼ c · n − 5 / 2 · ρ − n · n ! C ( x ) ∼ c · (1 − x/ρ ) 3 / 2 g n ∼ g · n − 5 / 2 · ρ − n · n ! G ( x ) ∼ g · (1 − x/ρ ) 3 / 2

  25. RESULT: asymptotic enumeration (II) If ∂T ∂z ( x, z ) has singularity type (1 − z/z 0 ) 3 / 2 , then 3 different situations may happen. Case 3 ( Mixed case ) d n ∼ d · n − 5 / 2 · x − n D ( x ) ∼ d · (1 − x/x 0 ) 3 / 2 · n ! 0 b n ∼ b · n − 7 / 2 · x − n B ( x ) ∼ b · (1 − x/x 0 ) 5 / 2 · n ! 0 c n ∼ c · n − 5 / 2 · ρ − n · n ! C ( x ) ∼ c · (1 − x/ρ ) 3 / 2 g n ∼ g · n − 5 / 2 · ρ − n · n ! G ( x ) ∼ g · (1 − x/ρ ) 3 / 2

  26. 2 different pictures Series-parallel-like situation Planar-like situation

  27. The bipartite framework

  28. A key example: Trees We count rooted trees ⇒ T = • × Set( T ) → T ( x ) = xe T ( x ) To forget the root, we just integrate: ( xU ′ ( x ) = T ( x )) { } ∫ x ∫ T ( x ) T ( s ) 1 − u du = T ( x ) − 1 T ( s ) = u 2 T ( x ) 2 ds = = T ′ ( s ) ds = du s 0 T (0) Question: can we interpret this formula combinatorially ?

  29. The dissymmetry theorem Let T a class of unrooted trees ⇒ canonical root (their centers). Dissymmetry Theorem for trees: T ∪ T •→• ≃ T •−• ∪ T • , For trees: T •→• → T ( x ) 2 ; T •−• → 1 2 T ( x ) 2 ; T • → T ( x ) . Dissymmetry Theorem ≡ Combinatorial Integration .

  30. Returning to the equations ( 1 + D ( x, y ) ) ∂y ( x, y ) = x 2 ∂y ( x, y ) = x 2 ∂B ↔ 2(1 + y ) ∂B 2 (1 + D ( x, y )) 2 1 + y ⇓ ∫ y ( 1 + D ( x, s ) ) B ( x, y ) = x 2 ds 2 1 + s 0 Amazingly, an EXACT formula exists! T ( x, D ( x, y )) − 1 2 xD ( x, y ) + 1 B ( x, y ) = 2 log(1 + xD ( x, y )) + ( ( )) x 2 D ( x, y ) + 1 1 + y 2 D ( x, y ) 2 + (1 + D ( x, y )) log . 2 1 + D ( x, y ) Is there a “tree-like” argument to explain this formula?

  31. The complete grammar for graphs A Grammar for Decomposing a Family of Graphs into 3-connected Components; (Chapuy, Fusy, Kang, Shoilekova) This system is obtained ap- plying the dissymmetry theorem for trees in an ingenious way . The key step is the one which translates combina- torially the integration!

  32. Bipartite Graphs: the strategy (I) Can we apply the same decomposition for bipartite graphs? 1-sums are easy! The 2-connected components are also bipartite

Recommend


More recommend