bidimensional regression beyond goodness of fit
play

Bidimensional regression beyond goodness-of-fit Measuring geometric - PowerPoint PPT Presentation

Bidimensional regression beyond goodness-of-fit Measuring geometric distortions in urban mental maps produced by blind people, wheelchair users and people without disabilities Jason Borioli 1,2 1 Ph.D student, Institute of Geography, Faculty of


  1. Bidimensional regression beyond goodness-of-fit Measuring geometric distortions in urban mental maps produced by blind people, wheelchair users and people without disabilities Jason Borioli 1,2 1 Ph.D student, Institute of Geography, Faculty of Geosciences and Environment, University of Lausanne, Switzerland 2 Graduate assistant, Laboratory for Experimental Research on Behavior (LERB), Institute of Psychology, Faculty, Of Social and Political Sciences, University of Lausanne, Switzerland he 15 th E T me r ging Ne w Re se ar c he r s in the Ge ogr aphy of He alth and Impair me nt Confe r e nc e 10- 11 June 2010 - Par is – F r anc e http:/ / www.ir de s.fr / E nr ghi2010 e nr ghi2010@ir de s.fr

  2. Outline • Bidimensional regression: general presentation • Conceptual bases • Goodness-of-fit vs geometric transformations • Geographical applications: urban mental maps • Discussion

  3. Bidimensional regression • Assess the similarity between two-dimensional data sets • Regression analysis and two-dimensional coordinate transformation models • Tobler introduced it to the geography literature [1965, 1966, 1978, 1994]. Was later introduced to the psychology [Friedman & Kohler, 2003] and computer-science literatures [Kare et al ., 2008]

  4. Conceptual bases Y y i = ax i + b + e i e i = y i − ax i − b e i n n ∑ ∑ ( ) ( ) 2 2 S = = y i − ax i − b e i i = 1 i = 1 X

  5. Conceptual bases 15 4 2 15 4 f i 13 15 2 13 4 e i 6 13 1 6 2 1 11 10 6 1 11 14 11 9 9 10 7 10 9 14 7 14 n  ( ) 2 + f i  3 S 2 = 5 ∑ ( ) 2 5 7 3 e i     3 i = 1 8 12 8 12 8 5 12

  6. Conceptual bases General definition of bidimensional regression           *  = Α xi ui  = Α xi + ei → ui           *         yi vi yi fi   vi u i , v i = observed coordinates (i.e. dependent coordinates) A = coordinate transformation matrix x i , y i = reference coordinates (i.e. independent coordinates) e i , f i = residuals * = predicted coordinates * , v i u i

  7. Conceptual bases Euclidean transformation: A=4 parameters Affine transformation: A=6 parameters Affine transformation: A=6 parameters Projective transformation: A=8 parameters Projective transformation: A=8 parameters Curvilinear transformation: A=x parameters Curvilinear transformation: A=x parameters

  8. Conceptual bases Euclidean transformation: A=4 parameters         − a 2 → u *  = a 1 x  + b 1             v *   a 2 a 1 y b 2         = s cos θ − s sin θ → u * x + b 1         s sin θ s cos θ  v *        y b 2  

  9. Geometric transformations Scale 2 10 • • tx=2 ty=3 • • • tx=2 5 45 ° ty=3 • • Scale 2 45 ° • • • • • 1 5 10 15 1

  10. Geometric transformations 1. Scale - rotation - translation = rotation - scale - translation     − a 2 s cos θ − s sin θ a 1 b 1 tx     → s sin θ s cos θ  a 2 a 1 b 2   ty          0 0 1 0 0 1 2. Rotation - translation - scale     − a 2 s cos θ − s sin θ a 1 b 1 stx     → s sin θ s cos θ  a 2 a 1 b 2   sty          0 0 1 0 0 1 3. Scale - translation - rotation     − a 2 s cos θ − s sin θ tx cos θ − ty sin θ a 1 b 1     → s sin θ s cos θ tx sin θ + ty cos θ  a 2 a 1 b 2            0 0 1 0 0 1 4. Translation - scale - rotation = translation - rotation - scale     − a 2 s cos θ − s sin θ stx cos θ − sty sin θ a 1 b 1     → s sin θ s cos θ stx sin θ + sty cos θ  a 2 a 1 b 2            0 0 1 0 0 1

  11. Urban mental maps

  12. Urban mental maps 4 15         * − a 2 13  = a 1 xi + b 1 ui          *       a 2 a 1 yi b 2   vi 6 2 11 10 a1=0.86, p=.000 1 14 9 7 a2=0.14, p=.348 3 b1=-5.32, p=.837 8 b2=36.63, p=.164 5 12 R2=0.57, p=.000

  13. Urban mental maps 1. Scale - rotation - translation = rotation - scale - translation scale=0.87, p=0.364; rotation=-9.31 ° , p=.000; tx=-5.32 , p=.823; ty=36.63 , p=.124 2. Rotation - translation - scale scale=0.87, p=0.364; rotation=-9.31 ° , p=.000; tx=-6.09 , p=.817; ty=41.88 , p=.164 3. Scale - translation - rotation scale=0.87, p=0.364; rotation=-9.31 ° , p=.000; tx=-11.18 , p=.677; ty=35.28 , p=.115 4. Translation - scale - rotation = translation - rotation - scale scale=0.87, p=0.364; rotation=-9.31 ° , p=.000; tx=-12.78 , p=.662; ty=40.33 , p=.168

  14. Urban mental maps Transformation order ( ) = 9.394, p = .153 2 6 χ RST(SRT) RTS STR TRS(TSR) Blind people 3 2 3 6 (n =14) Wheelchair users Group 5 3 3 3 (n =14) Non-impaired 3 4 5 2 (n =14)

  15. Discussion • Algebraic vs geometric parameters • No a priori order • “Preferential“ transformation orders • http://spatial-modelling.info/Darcy-2-module-de-comparaison

  16. Thank you for your attention

Recommend


More recommend