bi affine fractal interpolation functions and their box
play

Bi-Affine Fractal Interpolation Functions and their Box Dimension - PowerPoint PPT Presentation

Bi-Affine Fractal Interpolation Functions and their Box Dimension Peter Massopust Institute for Biomathematics and Biometry Helmholtz Zentrum M unchen, Germany and Centre of Mathematics, Lehrstuhl M6 Technische Universit at M unchen,


  1. Bi-Affine Fractal Interpolation Functions and their Box Dimension Peter Massopust Institute for Biomathematics and Biometry Helmholtz Zentrum M¨ unchen, Germany and Centre of Mathematics, Lehrstuhl M6 Technische Universit¨ at M¨ unchen, Germany Joint work with Michael Barnsley (Australian National University) Advances in Fractals and Related Topics, Dec 10 - 14, 2012 – Hongkong 1 / 16

  2. Outline • General iterated function systems • Fractal interpolants defined as fixed points of Read-Bajraktarevi´ c operators • Bi-affine fractal interpolants • Box dimension of bi-affine fractal interpolants 2 / 16

  3. General iterated functions systems (IFSs) Let ( X , d ) be a complete metric space with metric d = d X . Definition. Let M ∈ N . If f m : X → X , m = 1 , 2 , . . . , M, are continuous mappings, then F = ( X ; f 1 , f 2 , ..., f M ) is called an iterated function system (IFS). Define F : 2 X → 2 X by F ( B ) := � ∀ B ∈ 2 X . f ( B ), f ∈F Let H = H ( X ) be the hyperspace of nonempty compact subsets of X endowed with the Hausdorff metric d H . Since F ( H ) ⊂ H , we can also treat F as a mapping F : H → H . 3 / 16

  4. Theorem. (i) The metric space ( H , d H ) is complete. (ii) If ( X , d X ) is compact then ( H , d H ) is compact. (iii) If ( X , d X ) is locally compact then ( H , d H ) is locally compact. (iv) If X is locally compact, or if each f ∈ F is uniformly continuous, then F : H → H is continuous. (v) If f : X → X is a contraction mapping for each f ∈ F , then F : H → H is a contraction mapping. 4 / 16

  5. Attractor of an IFS Definition. A nonempty compact set A ⊂ X is said to be an attractor of the IFS F if (i) F ( A ) = A and (ii) ∃ an open set U ⊂ X such that A ⊂ U and lim k →∞ F k ( B ) = A , ∀ B ∈ H ( U ), where the limit is taken with respect to the Hausdorff metric. The largest open set U such that (ii) is true is called the basin of attraction (for the attractor A of the IFS F ). [For more details and generalizations, see M. F. Barnsley & A. Vince, The chaos game on a general iterated function system, Ergod. Th. & Dynam. Syst. 31 (2011) 1073-1079.] 5 / 16

  6. Fractal interpolants as fixed points of operators Let 1 < N ∈ N and let { ( X j , Y j ) : j = 0 , 1 , ..., N } be finite set of points in the Euclidean plane with X 0 < X 1 < ... < X N . Set I := [ X 0 , X N ]. Let ℓ n : I → [ X n − 1 , X n ] be continuous bijections. ( n = 1 , 2 , ..., N ) Let L : I → I be bounded with L ( x ) = ℓ − 1 n ( x ) , for x ∈ ( X n − 1 , X n ). Let S : [ X 0 , X N ] → R be bounded and piecewise continuous where the only possible discontinuities occur at the points in { X 1 , X 2 , ..., X N − 1 } . Let s := max {| S ( x ) | : x ∈ [ X 0 , X N ] } . 6 / 16

  7. For the complete metric space ( C ( I ) , d ∞ ), define subspaces C ∗ := C ∗ ( I ) := { f ∈ C ( I ) : f ( X 0 ) = Y 0 , f ( X N ) = Y N } , C ∗∗ := C ∗∗ ( I ) := { f ∈ C ( I ) : f ( X j ) = Y j , for j = 0 , 1 , ..., N } . Note that: C ∗∗ ⊂ C ∗ ⊂ C ( I ) are closed subspaces of C ( I ). • f ∈ C ∗∗ interpolates the data { ( X j , Y j ) : j = 0 , 1 , . . . , N } . • Let b ∈ C ∗ and h ∈ C ∗∗ . Define a Read-Bajraktarevi´ c operator T : C ( I ) → C ( I ) by T ( g ) = h + S · ( g ◦ L − b ◦ L ) . 7 / 16

  8. Theorem. The mapping T : C ( I ) → C ( I ) obeys d ∞ ( Tg, Th ) ≤ s d ∞ ( g, h ) , ∀ g, h ∈ C ( I ). In particular, if s < 1 then T is a contraction and thus possesses a unique fixed point f ∈ C ∗∗ . Note that Tg = H + S · g ◦ L where H = h − S · b ◦ L . A fractal interpolation function f is uniquely defined by these three functions: H, S , and L . k →∞ T k ( f 0 ) , f 0 ∈ C ∗ . f = lim The rate of convergence of { T k f 0 : k ∈ N } is governed by ∞ ≤ s k � f − f 0 � ∞ . � � f − T k ( f 0 ) � � 8 / 16

  9. The metric space ( I × R , d q ) The following metric is a generalization of the “taxi cab metric.” Theorem. Let α, β > 0 and q : I → R . Define a mapping d q : ( I × R ) × ( I × R ) → [0 , ∞ ) by d q (( x 1 , y 1 ) , ( x 2 , y 2 )) = α | x 1 − x 2 | + β | ( y 1 − q ( x 1 )) − ( y 2 − q ( x 2 )) | , ∀ ( x 1 , y 1 ), ( x 2 , y 2 ) ∈ I × R . Then d q is a metric on I × R . If q is continuous then ( I × R , d q ) is a complete metric space. 9 / 16

  10. Fractal interpolants as attractors of IFSs Define w n : I × R → I × R by w n ( x, y ) = ( ℓ n ( x ) , h ( ℓ n ( x )) + S ( l n ( x ))( y − b ( x ))) Define an IFS by W = ( I × R ; w 1 , w 2 , ..., w N ). Let B ≥ 0 and let X = { ( x, y ) : x ∈ I, | y − f ( x ) | ≤ B } . Theorem. Let s < 1 and let f ∈ C ∗∗ be the fixed point of T . Let ∃ λ ℓ < 1 so that | ℓ n ( x 1 ) − ℓ n ( x 2 ) | ≤ λ ℓ | x 1 − x 2 | ∀ x 1 , x 2 ∈ I, ∀ n . Let ∃ λ S > 0 so that | S ( x 1 ) − S ( x 2 ) | ≤ λ S | x 1 − x 2 | ∀ x 1 , x 2 ∈ I. Then the IFS ( X ; w 1 , w 2 , ..., w N ) is contractive with respect to the metric d f with α = 1 and 0 < β < (1 − λ ℓ ) /λ S Bλ ℓ . In particular, under these conditions, the IFS W has a unique attractor A = graph ( f ). graph ( T ( g )) = W (graph ( g )) , for all g ∈ C ( I ) . We have not provided a metric with respect to which W is contractive! 10 / 16

  11. Bi-affine fractal interpolation Let � X n − X n − 1 � ℓ n ( x ) := X n − 1 + ( x − X 0 ) , X N − X 0 S ( x ) = s n ( ℓ − 1 n ( x )) , for x ∈ [ X n − 1 , X n ] , n = 1 , . . . , N, � s n − s n − 1 � s n ( x ) = s n − 1 + ( x − X n − 1 ) , X n − X n − 1 with { s j : j = 0 , 1 , 2 , ..., N } ⊂ ( − 1 , 1). Then S is continuous and | S ( x ) | ≤ max {| s j | : j = 0 , 1 , ..., N } =: s < 1 . Let � Y N − Y 0 � b ( x ) = Y 0 + ( x − X 0 ) X N − X 0 and let � Y n − Y n − 1 � h ( x ) = Y n − 1 + ( x − X n − 1 ) . X n − X n − 1 11 / 16

  12. Bi-affine fractal interpolants T has a unique fixed point f satisfying the set of functional equations f ( ℓ n ( x )) − h ( ℓ n ( x )) = [ s n − 1 + ( s n − s n − 1 ) x ][ f ( x ) − b ( x )] , x ∈ I . f is called a bi-affine fractal interpolant . Define an IFS W by � Y n − Y n − 1 � ( x − X 0 ) w n ( x, y ) = ( ℓ n ( x ) , Y n − 1 + X N − X 0 � Y N − Y 0 � � s n − s n − 1 � � � � � + s n − 1 + ( x − X 0 ) y − Y 0 − ( x − X 0 ) . X N − X 0 X N − X 0 Note: w n ( X N , y ) = ( X n , Y n + s n ( y − Y N )) and w n +1 ( X 0 , y ) = ( X n , Y n + s n ( y − Y 0 )) . 12 / 16

  13. Example of a bilinear interpolant The images of any (possibly degenerate) parallelogram with vertices at ( X 0 , Y 0 ± H ) and ( X N , Y N ± H ), for H ∈ R under the IFS W fit together neatly. Figure : A bilinear fractal interpolant. 13 / 16

  14. Box dimension of bi-affine interpolants Box-counting or box dimension of a bounded set M ⊂ R n : log N ε ( M ) dim B M := lim , ( ∗ ) log ε − 1 ε → 0+ where N ε ( M ) is the minumum number of square boxes, with sides parallel to the axes, whose union contains M. “dim B M = D ” ⇐ ⇒ the limit in (*) exists and equals D. Theorem. Let W denote the bi-affine IFS defined above, and let Γ( f ) denote its attractor. Let a n = 1 /N for n = 1 , 2 , ..., N , and let � N s n − 1 + s n > 1 . If Γ( f ) is not a straight line segment then n =1 2 � N � s n − 1 + s n � log 2 n =1 dim B Γ( f ) = 1 + ; log N otherwise dim B Γ( f ) = 1 . 14 / 16

  15. Idea of Proof Arguments based on approach in Hardin & M. (1985) and Barnley, Elton, Hardin, M. (1989) Denote by w σ 1 ··· σ r (Γ( f )) the image of Γ( f ) under the maps w σ 1 ··· σ r := w σ 1 ◦ · · · ◦ w σ r over the subinterval ℓ σ 1 ··· σ r ( I ). Then one can show there that exist constants 0 < c ≤ c such that c λ σ 1 · · · λ σ r N | σ | ≤ N σ 1 ··· σ r ( | σ | ) ≤ c λ σ 1 · · · λ σ r N | σ | , Here, N σ 1 ··· σ r ( | σ | ) = minimum number of N −| σ | × N −| σ | -squares needed to cover w σ 1 ··· σ r (Γ( f )) and λ i := s i − 1 + s i . 2 Nonlinearity ( xy -term) rather tricky; delicate estimates are needed. 15 / 16

  16. References • M. F. Barnsely, Fractal functions and interpolation, Constr. Approx. 2 (1986) 303-329. • M. F. Barnsley, J. Elton, D. P. Hardin and P. R. Massopust, Hidden variable fractal interpolation functions, SIAM J. Math. Anal. , 20 (5) (1989), 1218–1248. • M. F. Barnsley and P. R. Massopust, Bilinear Fractal Interpolation and Box Dimension , submitted to Constructive Approximation. (http://arxiv.org/abs/1209.3139) • D. P. Hardin and P. R. Massopust, The capacity for a class of fractal functions, Commun. Math. Phys. 105 (1986), 455—460. • P. R. Massopust, Fractal Functions, Fractal Surfaces, and Wavelets , Academic Press, 1994. • P. R. Massopust, Interpolation and Approximation with Splines and Fractals, Oxford University Press, 2010 16 / 16

Recommend


More recommend