beyond outerplanarity
play

Beyond Outerplanarity Steven Chaplick , Myroslav Kryven , Giuseppe - PowerPoint PPT Presentation

Beyond Outerplanarity Steven Chaplick , Myroslav Kryven , Giuseppe Liotta , offler , Alexander Wolff . Andre L Julius-Maximilians-Universit at W urzburg, Germany Dipartimento di Ingegneria, Universit` a degli


  1. Beyond Outerplanarity Steven Chaplick ∗ , Myroslav Kryven ∗ , Giuseppe Liotta † , offler ∗ , Alexander Wolff ∗ . Andre L¨ ∗ Julius-Maximilians-Universit¨ at W¨ urzburg, Germany † Dipartimento di Ingegneria, Universit` a degli Studi di Perugia, Italy

  2. Generalizing Planarity – “nice” crossings k-planarity: each edge is crossed by ≤ k edges.

  3. Generalizing Planarity – “nice” crossings k-planarity: each edge is crossed by ≤ k edges. } ≤ k

  4. Generalizing Planarity – “nice” crossings k-planarity: each edge is k-quasi-planarity : each k -tuple crossed by ≤ k edges. of edges has a non-crossing pair. } ≤ k 4-quasi-planar, but not 3-quasi-planar

  5. Generalizing Planarity – “nice” crossings k-planarity: each edge is k-quasi-planarity : each k -tuple crossed by ≤ k edges. of edges has a non-crossing pair. } ≤ k 4-quasi-planar, but not 3-quasi-planar planarity = 0-planarity = 2-quasi-planarity

  6. Generalizing Planarity – “nice” crossings k-planarity: each edge is k-quasi-planarity : each k -tuple crossed by ≤ k edges. of edges has a non-crossing pair. } ≤ k 4-quasi-planar, but not 3-quasi-planar planarity = 0-planarity = 2-quasi-planarity These are quite general ... what about something simpler?

  7. Generalizing Planarity – “nice” crossings k-planarity: each edge is k-quasi-planarity : each k -tuple crossed by ≤ k edges. of edges has a non-crossing pair. } ≤ k 4-quasi-planar, but not 3-quasi-planar planarity = 0-planarity = 2-quasi-planarity These are quite general ... what about something simpler? Outerplanarity: a planar drawing with all vertices on a face.

  8. Generalizing Planarity – “nice” crossings k-planarity: each edge is k-quasi-planarity : each k -tuple crossed by ≤ k edges. of edges has a non-crossing pair. } ≤ k 4-quasi-planar, but not 3-quasi-planar planarity = 0-planarity = 2-quasi-planarity These are quite general ... what about something simpler? Outerplanarity: a planar drawing with all vertices on a face. ≡ straight-line planar drawing w/ vertices in convex position

  9. Generalizing Planarity – “nice” crossings k-planarity: each edge is k-quasi-planarity : each k -tuple crossed by ≤ k edges. of edges has a non-crossing pair. } ≤ k 4-quasi-planar, but not 3-quasi-planar planarity = 0-planarity = 2-quasi-planarity These are quite general ... what about something simpler? Outerplanarity: a planar drawing with all vertices on a face. ≡ straight-line planar drawing w/ vertices in convex position outer outer k-quasi- k-planarity planarity

  10. Concepts/Problems G ≤ d Degeneracy: a hereditary graph class is d -degenerate if every graph G in it has a vertex of degree ≤ d .

  11. Concepts/Problems G ≤ d Degeneracy: a hereditary graph class is d -degenerate if every graph G in it has a vertex of degree ≤ d . Obs: d -degenerate → ( d + 1)-colorable planar : 5-degenerate; outerplanar : 2-degenerate.

  12. Concepts/Problems G ≤ d Degeneracy: a hereditary graph class is d -degenerate if every graph G in it has a vertex of degree ≤ d . Obs: d -degenerate → ( d + 1)-colorable planar : 5-degenerate; outerplanar : 2-degenerate. G ≤ 2 3 n } Separation Number (sn): a graph ≤ k class has sn ≤ k when every graph G in it has a balanced separator of size ≤ k . planar : sn ≤ 2 √ n ; outerplanar : sn ≤ 2 } ≤ 2 3 n

  13. Concepts/Problems G ≤ d Degeneracy: a hereditary graph class is d -degenerate if every graph G in it has a vertex of degree ≤ d . Obs: d -degenerate → ( d + 1)-colorable planar : 5-degenerate; outerplanar : 2-degenerate. G ≤ 2 3 n } Separation Number (sn): a graph ≤ k class has sn ≤ k when every graph G in it has a balanced separator of size ≤ k . planar : sn ≤ 2 √ n ; outerplanar : sn ≤ 2 } ≤ 2 3 n Recognition: Testing for membership in a graph class. both planarity and outerplanarity can be tested in linear time.

  14. Background : General Drawings k -planar graphs – introduced by Ringel ’65. √ • Edge density: 4.108 n [Pach, T´ oth ’97] k √ → 8.216 k -degenerate (via avg. degree) √ • O ( kn ) treewidth [Dujmovi´ c, Eppstein, Wood ’17] √ → sn ∈ O ( kn ) • 1-planarity testing is NP-hard [Grigoriev, Bodlaender ’07] k -quasi-planar graphs • Edge density: ( n log n )2 α ( n ) ck [Fox, Pach, Suk ’13] Conjectured to be c k n [Pach et al ’96] Comparing Classes: • k -planar ⊂ ( k + 1)-quasi-planar: k > 2 [Angelini et al ’17], k = 2 [Hoffmann, T´ oth ’17]

  15. Background : Outer Drawings Outer k -crossing ( ≤ k crossings in the whole drawing) √ √ } • O ( k ) treewidth → sn ∈ O ( k ) [Bannister, • Ext. Monadic Second Order Logic Eppstein ’14] (MSO 2 ) formula for outer k -crossing → testing outer k -crossing in time O ( f ( k )( n + m ))

  16. Background : Outer Drawings Outer k -crossing ( ≤ k crossings in the whole drawing) √ √ } • O ( k ) treewidth → sn ∈ O ( k ) [Bannister, • Ext. Monadic Second Order Logic Eppstein ’14] (MSO 2 ) formula for outer k -crossing → testing outer k -crossing in time O ( f ( k )( n + m )) Outer k -planarity • treewidth ≤ 3 k + 11 → sn ≤ 3 k + 12 [Wood, Telle ’07] • Recognition: outer 1-planar in linear time [Auer et al ’16, Hong et al ’15] full outer 2-planar in linear time [Hong, Nagamochi ’16]

  17. Background : Outer Drawings Outer k -crossing ( ≤ k crossings in the whole drawing) √ √ } • O ( k ) treewidth → sn ∈ O ( k ) [Bannister, • Ext. Monadic Second Order Logic Eppstein ’14] (MSO 2 ) formula for outer k -crossing → testing outer k -crossing in time O ( f ( k )( n + m )) Outer k -planarity • treewidth ≤ 3 k + 11 → sn ≤ 3 k + 12 [Wood, Telle ’07] • Recognition: outer 1-planar in linear time [Auer et al ’16, Hong et al ’15] full outer 2-planar in linear time [Hong, Nagamochi ’16] Outer k -quasi-planarity � 2 k − 1 � • Edge density: ≤ 2( k − 1) n − [Capoyleas, Pach ’92] 2 → (4 k − 5)-degenerate

  18. Results Outer k -planar graphs √ √ • ( ⌊ 4 k + 1 ⌋ + 1)-degenerate → ( ⌊ 4 k + 1 ⌋ + 2)-colorable • separation number ≤ 2 k + 3 → quasi-poly time recognition

  19. Results Outer k -planar graphs √ √ • ( ⌊ 4 k + 1 ⌋ + 1)-degenerate → ( ⌊ 4 k + 1 ⌋ + 2)-colorable • separation number ≤ 2 k + 3 → quasi-poly time recognition Outer k -quasi-planar graphs • Outer 3-quasi planarity is incomparable with planarity • edge maximal drawings

  20. Results Outer k -planar graphs √ √ • ( ⌊ 4 k + 1 ⌋ + 1)-degenerate → ( ⌊ 4 k + 1 ⌋ + 2)-colorable • separation number ≤ 2 k + 3 → quasi-poly time recognition Outer k -quasi-planar graphs • Outer 3-quasi planarity is incomparable with planarity • edge maximal drawings Closed Drawings in MSO 2 • closed outer k -planarity and closed outer k -quasi-planarity can be expressed in MSO 2

  21. Outline Outer k -planar graphs √ √ • ( ⌊ 4 k + 1 ⌋ + 1)-degenerate → ( ⌊ 4 k + 1 ⌋ + 2)-colorable • separation number ≤ 2 k + 3 → quasi-poly time recognition Outer k -quasi-planar graphs • Outer 3-quasi planarity is incomparable with planarity • edge maximal drawings Closed Drawings in MSO 2 • closed outer k -planarity and closed outer k -quasi-planarity can be expressed in MSO 2

  22. Outer k -planarity √ Obs: An outer k -planar clique has ≤ ⌊ 4 k + 1 ⌋ + 2 vertices

  23. Outer k -planarity √ Obs: An outer k -planar clique has ≤ ⌊ 4 k + 1 ⌋ + 2 vertices Proof: • a complete bipartite graph crosses ab . a b

  24. Outer k -planarity √ Obs: An outer k -planar clique has ≤ ⌊ 4 k + 1 ⌋ + 2 vertices Proof: • a complete bipartite graph crosses ab . a • thus, for even n , k ≥ ( n − 2 2 ) 2 , and for odd n , k ≥ 1 4 ( n − 3)( n − 1) √ → n ≤ ⌊ 4 k + 1 ⌋ + 2 b

  25. Outer k -planarity √ Obs: An outer k -planar clique has ≤ ⌊ 4 k + 1 ⌋ + 2 vertices √ Thm: outer k -planar graphs are ( ⌊ 4 k + 1 ⌋ + 1)-degenerate.

  26. Outer k -planarity √ Obs: An outer k -planar clique has ≤ ⌊ 4 k + 1 ⌋ + 2 vertices √ Thm: outer k -planar graphs are ( ⌊ 4 k + 1 ⌋ + 1)-degenerate. Proof (idea): Suppose, ≥ ℓ vertices left of ab , w/ deg. ≥ δ . a ℓ ≤ ≥ δ b

  27. Outer k -planarity √ Obs: An outer k -planar clique has ≤ ⌊ 4 k + 1 ⌋ + 2 vertices √ Thm: outer k -planar graphs are ( ⌊ 4 k + 1 ⌋ + 1)-degenerate. Proof (idea): Suppose, ≥ ℓ vertices left of ab , w/ deg. ≥ δ . a ℓ ≤ → δℓ − ℓ ( ℓ + 1) edges cross ab ≥ δ b

  28. Outer k -planarity √ Obs: An outer k -planar clique has ≤ ⌊ 4 k + 1 ⌋ + 2 vertices √ Thm: outer k -planar graphs are ( ⌊ 4 k + 1 ⌋ + 1)-degenerate. Proof (idea): Suppose, ≥ ℓ vertices left of ab , w/ deg. ≥ δ . a ℓ ≤ → δℓ − ℓ ( ℓ + 1) edges cross ab √ √ ≥ δ 4 k + 1 ⌋ + 1, ℓ = ⌊ 1 Note: δ > ⌊ 4 k + 1 ⌋ + 1 2 is not possible by the proof of Obs. b

  29. Outer k -planarity √ Obs: An outer k -planar clique has ≤ ⌊ 4 k + 1 ⌋ + 2 vertices √ Thm: outer k -planar graphs are ( ⌊ 4 k + 1 ⌋ + 1)-degenerate. Proof (idea): Suppose, ≥ ℓ vertices left of ab , w/ deg. ≥ δ . a ℓ ≤ → δℓ − ℓ ( ℓ + 1) edges cross ab √ √ ≥ δ 4 k + 1 ⌋ + 1, ℓ = ⌊ 1 Note: δ > ⌊ 4 k + 1 ⌋ + 1 2 is not possible by the proof of Obs. b Proceed by induction on the range [ ℓ , ℓ ∗ ] where there can be no edge with any x ∈ [ ℓ , ℓ ∗ ] vertices on it’s left.

Recommend


More recommend