bayesian d s optimal designs for generalized linear
play

Bayesian D s -Optimal Designs for Generalized Linear Models with - PowerPoint PPT Presentation

Bayesian D s -Optimal Designs for Generalized Linear Models with Varying Dispersion Parameter Edmilson Rodrigues Pinto - (FAMAT-UFU, Brazil) Antnio Ponce de Leon - (IMS-UERJ, Brazil) MODA 8, Almagro 4 th to 8 th June 2007 Outline I


  1. Bayesian D s -Optimal Designs for Generalized Linear Models with Varying Dispersion Parameter Edmilson Rodrigues Pinto - (FAMAT-UFU, Brazil) Antônio Ponce de Leon - (IMS-UERJ, Brazil) MODA 8, Almagro 4 th to 8 th June 2007

  2. Outline • I ntroduction – JMMD (Joint Modeling of Mean and Dispersion) – Review of D-optimality for the JMMD • “Pseudo-Bayesian” criterion of D-optimality • Information matrix and the standardized variance • General Equivalence Theorem • D s -Optimality – D s -optimality for the JMMD – Information matrix and the standardized variance – General Equivalence Theorem • I llustration • Final Considerations

  3. JMMD (Joint Modeling of Mean and Dispersion) � JMMD ⇒ proposed by Nelder & Lee (1991) and it is linked with the criterion of extended quasi likelihood. � Two interlinked GLM ´s ( ) ( ) = µ = φ µ Model for the mean : E y Var y ( ) V ; i i i i i ∑ ( ) η = µ = β = β k x X i i ij j i j ( ) ( ) = φ = ε φ Model for the dispersion : ; ( ) E d Var d V i i i D i ( ) ∑ τ = φ = γ = γ h z Z i i ij j i j � Non correlated observations. � Covariates { z i } may be a subset of covariates { x i }.

  4. JMMD Summary Table 1. Summary of the joint modeling of mean and dispersion Component M odel for mean M odel for dispersion ( ) = − * d d 1 h Response y µ φ M ean ( ) φ µ 2 φ 2 V Variance ( ) ( ) η = µ τ = φ k log Link η = β τ = γ X Z Linear Preditor { } ( ) ( ) − = − ∫ − φ + − φ φ µ y t * * 2 log d d d 2 dt Deviance component ( ) V t y 1 φ − 1 Prior weight h ( ) − 1 = W here h is the i th element in the diagonal of 1 2 T 1 2 H W X X W X XW

  5. The Equivalence Theory (D-optimality) Atkinson & Cook (1995) regard a generic design problem. ∈ χ θ Let be a vector of parameters and a design vector. u ( ) × t 1 The Fisher information matrix per observation is as follows : = ∑ ( ) k θ T I u h h j j = j 1 = θ where h h u ( , ) . j j = ∫ ( ) ( ) ( ) θ ξ θ ξ M I u d u The information matrix is : χ ( ) ( ) ξ u D-optimality ⇒ find ln M θ ξ to maximize .

  6. � The information matrix depends on the parameters. Two solutions are locally optimal or “pseudo-Bayesian” designs. � A “pseudo- Bayesian” criterion function is : ( ) ⎡ ⎤ ψ = θ ξ E ln M ⎣ ⎦ θ θ E θ where refers to expectation with respect to a prior θ distribution for . � In this case the standardized variance is: ( ) ( ) ( ) ( ) ⎡ ⎤ θ ξ = θ − θ ξ θ T 1 d u , , E h u , M h u , ⎣ ⎦ θ j j j

  7. General Equivalence Theorem (GET) (“pseudo-Bayesian” D-optimality) ( ) ξ ∗ ⎡ ⎤ θ ξ Ξ � The design maximizes over E ln M ⎣ ⎦ θ ( ) k k ∑ ∑ ( ) θ ξ ∗ θ ξ = � Min Max d u , , Max d u , , j j Ξ χ χ = = j 1 j 1 ( ) k ∑ θ ξ ∗ = � Max d u , , t j χ = j 1 where t is the number of parameters in the model.

  8. D S -optimality for the JMMD • The researcher is interested only in a reduced number of parameters in the mean model as well as in a reduced number of parameters in the dispersion model. • D S -optimality is an extension of D-optimality. • Discrimination between rival nested models

  9. D S -optimality for the JMMD Two GLM´ s ⇒ mean and dispersion • ( ) ( ) ( ) ( ) η β = β τ γ = γ γ β T T , x f x , z g z and , where and . p × 1 q × 1 ⎡ ⎤ M M 0 0 11 12 ⎢ ⎥ ⎡ ⎤ M 0 0 0 M M ⎢ ⎥ = = × p p 21 22 ⎢ ⎥ M ⎢ ⎥ C 0 D ⎣ ⎦ 0 0 D D × q q 11 12 ⎢ ⎥ ⎣ ⎦ 0 0 D D ( ) ( ) + + 21 22 p q × p q s • Interest lies in parameters in the mean model and m s in parameters in the dispersion model. d ( ) ( ) is , is M s s D s s × × 11 m m 11 d d

  10. ⎡ ⎤ 11 12 M M 0 0 ⎢ ⎥ 21 22 M M 0 0 ⎢ ⎥ − = ⎢ 1 • In this case: M ⎥ C 11 12 0 0 D D ⎢ ⎥ 21 22 ⎣ ⎦ 0 0 D D ⎡ ⎤ I 0 0 0 s = ⎢ ⎥ T m • Let: A ⎢ ⎥ 0 0 I 0 ⎣ ⎦ ( ) ( ) s + + d s s s s × m d m d ⎡ ⎤ 11 M 0 − = ⎢ T 1 ⎥ • Then: A M A C 11 ⎣ ⎦ 0 D • The “pseudo-Bayesian” criterion to D s -optimality is: ⎧ ⎫ ⎛ ⎞ ⎛ ⎞ ⎪ ⎪ M D ( ) ⎡ ⎤ = ϕ θ ξ + ⎨ ⎜ ⎟ ⎜ ⎟ ⎬ M E ln ln ⎣ ⎦ ⎜ ⎟ ⎜ ⎟ θ θ C ⎪ ⎪ M D ⎝ ⎠ ⎝ ⎠ ⎩ ⎭ 22 22

  11. • The Frechét derivative at M C1 in the direction of M C2 u at the point is i { ( ) ( ) ( ) ( ) ( ) − − θ ξ = − + T 1 T 1 f x f x f x f x D u , , E w M w M ϕ θ i i i i i i i 2 i i 22 2 i i i ( ) } ( ) ( ) ( ) − − − − 1 1 T T v g z D g z v g z D g z s i i i i i i 2 i i 22 2 i i • The standardized variance is: { ( ) ( ) ( ) ( ) ( ) ( ) − − θ ξ = − T 1 T 1 d u , , E w f x M f x f x M f x + ϕ θ i i i i i i i 2 i i 22 2 i i ) } ( ( ) ( ) ( ) ( ) − − − 1 1 T T v g z D g z g z D g z i i i i i 2 i i 22 2 i i ( ∗ ≤ ) ∗ ξ ξ • For the optimal design , with equality d x , s S ( ) + = s s s at the design support points. Here . m d

  12. Example: Coffee tasting • Aim: Ideal conditions of toasting to enhance quality of coffee. 3 • Design: Complete factorial 2 • Response: quantity of trigoneline. ( ) x • Factors: Temperature of drying , 1 ( ) x Temperature of toasting , and 2 ( ) Air speed in the drying of coffee . x 3

  13. Experimental Setting ( ) ( ) o o x 1 : 300 C high level and 100 C low level ( ) ( ) o o x 2 : 600 C high level and 300 C low level ( ) ( ) x 3 : 1850 rpm high level and 1300 rpm low level x 1 x 2 x 3 Y 1 1 1 0,38 0,45 0,40 1 1 -1 0,63 0,59 0,65 1 -1 1 0,73 0,68 0,66 1 -1 -1 0,69 0,68 0,70 -1 1 1 0,39 0,37 0,40 -1 1 -1 0,65 0,65 0,64 -1 -1 1 0,70 0,71 0,75 -1 -1 -1 0,67 0,68 0,79

  14. ( ) V µ = � Model for the mean: link identity and 1 � Model for dispersion: Gamma with logarithmic link � Design matrix with columns: 1, , x x , , x x x , x x , x x , x x x 1 2 3 1 2 1 3 2 3 1 2 3 • Fitted Model using the JMMD µ = − − − ˆ 2.374 0.374 x 0.167 x 0.261 x x 2 3 2 3 { } σ = − − 2 ˆ exp 6.24 1.106 x x 2 3

  15. x , x the interaction x x To verify if variables and 2 3 2 3 are important in the mean model as well as the x x interaction in the model for dispersion. 2 3 = = • Therefore, and . s 3 s 1 m d = + = s s s 4 m d

  16. • Systematic components ( ) ( ) τ x γ = γ + γ η x β = β + β + β + β , x x , x x x x 0 1 2 3 0 1 2 2 3 3 2 3 • Prior distribution evolves around the parameter estimates of the mean and dispersion models. ( ) ( ) β = − − − γ = − − 2.374, 0.374, 0.167, 0.261 6.24, 1.106 α ( ) δ • We add and deduct to the values of the parameters of the mean (dispersion) model. α = δ = 0.25 • For the pseudo-Bayesian D S -optimum design is: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ⎧ ⎫ − − − − − − − 1.0,1.0 1.0,0.7 1.0, 1.0 1.0,1.0 1.0,0.7 1.0, 1.0 0.7, 1.0 0.7,1.0 ξ = ⎨ * ⎬ S ⎩ ⎭ 0.15 0.08 0.15 0.19 0.08 0.19 0.08 0.08

  17. x and x • The graphic of standardized variance as a function of is: 2 3

  18. Final considerations • Optimal designs for subsets of parameters in the mean and in the dispersion models. • Different scenarios showed by Pinto and Ponce de Leon (2004) for local designs and Bayesian designs for parameters in the mean and dispersion models can be considered.

  19. Thank you Acknowledgements � Edmilson Rodrigues Pinto is grateful to FAPEMI G – the research foundation of Minas Gerais – Brazil. � Antonio Ponce de Leon is grateful to CNPq for the travel grant.

Recommend


More recommend