b e r g m a n s m e c h a t r o n i c s l l c
play

B e r g m a n s M e c h a t r o n i c s L L C Progress in the - PowerPoint PPT Presentation

B e r g m a n s M e c h a t r o n i c s L L C Progress in the Development of a TDLAS Sensor for Industrial Applications J.L. Bergmans i , & T.P. Jenkins ii i Bergmans Mechatronics LLC (Newport Beach, CA) ii MetroLaser, Inc. (Irvine, CA)


  1. B e r g m a n s M e c h a t r o n i c s L L C Progress in the Development of a TDLAS Sensor for Industrial Applications J.L. Bergmans i , & T.P. Jenkins ii i Bergmans Mechatronics LLC (Newport Beach, CA) ii MetroLaser, Inc. (Irvine, CA) American-Japanese Flame Research Committees International Symposium, Waikaloa, HI, Oct 22-24, 2007. 1616 Bedford Lane, Unit A Phone: 714-474-8956 Newport Beach, CA 92660 Fax: 949-646-1429

  2. Overview BML • Theory of Operation and System Description • Applications • Coal-Fired Power Plant • Oxy-Fuel Burner • Conclusions / Future Work

  3. Theory of Operation BML LTS-100 Laser Temperature Sensor employs two-line TDLAS to measure temperature and H 2 O concentration Calibration testing using flat flame burner: Flat flame Collimator burner Detector Coax cable Thermocouple Fiber optic LTS-100

  4. Theory of Operation BML Detector signal during calibration (TC = 2578 ° F, corrected) 6 Regions Used for Baseline Calculation 5 Computed Baseline 4 Voltage 3 Detector Signal Feature 1 2 1 Feature 2 0 0 50 100 150 200 250 300 350 400 450 500 Time (usec) ( ) ⎛ ⎞ λ Absorbance: I ⎜ ⎟ α λ = − ln ⎜ ( ) ⎟ λ ⎝ ⎠ I o

  5. Theory of Operation BML With constant temperature along beam path, ratio of absorbance under two absorption peaks is a function of temperature: ( ) 1 ≈ A S T = 1 R ( ) A S T 2 2 Typical Calibration Spectra Calibration Curve 0.08 2700.0 1712 °F 0.07 2205 °F 2578 °F 2500.0 0.06 2788 °F Corrected Temperature (deg F) T = -1035.5*R 2 + 3375.7*R + 719.14 0.05 2300.0 Absorbance 0.04 2100.0 0.03 0.02 1900.0 0.01 1700.0 0 -0.01 1500.0 0 50 100 150 200 250 300 350 400 450 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 Time (usec) Absorption Ratio

  6. Recent LTS-100 System Upgrades BML • Flange-mountable optical enclosures • Unified Processing Unit • Improved Laser Alignment System hardware and software

  7. Objectives of Power Plant Testing BML • To demonstrate extended-duration operation of the LTS-100 in a large scale setting • To compare LTS-100 temperature measurements with expected temperature data

  8. Ameren Sioux Station Overview BML • Located north of St Louis, MO, on Mississippi river • Two, coal-fired, cyclone units • Each unit nominally rated at 485 MW

  9. Ameren Sioux Station Overview BML • LTS-100 tested on Unit 1 • Beam passed from side to side over 48 foot width of boiler • Testing performed from end of Aug 2007 to beginning of Sep 2007

  10. Installation at Sioux Station BML Detector Enclosure Scanner Enclosure Elevation: 568’ Coax Cable Fiber Optic Cable Boiler (500’ length) (1000’ length) Detector Signal 48’ Laser Light Processing Terminal Room Unit Elevation: 446’

  11. BML Detector Optics Enclosure on Boiler Processing Unit in Terminal Room LTS-100 Hardware

  12. Laser Alignment System BML • Computer controlled two-axis scanner • Angular resolution: 0.0069 ° ( 0.069” at 48 feet) • Range of motion: ± 13.7 ° 0.0069 ° Pivoting Mirror 0.069” 48’=576” Pivoting Mirror Outgoing Beam Incoming Beam

  13. Temperature and Load Data BML 3000 500 Typical High Temp (T=2637 ° F at 19:03:33 on 9/3/07) 2900 450 2800 400 2700 350 Temperature (°F) 2600 300 Load (MW) 2500 250 2400 200 2300 150 2200 100 LTS-100 Temperature Load 2100 50 2000 0 09/02/07 09/03/07 09/03/07 09/03/07 09/03/07 09/04/07 09/04/07 18:00 00:00 06:00 12:00 18:00 00:00 06:00 Date/Time

  14. Temperature and Load Data BML 400 500 Typical High Temp (T=2637 ° F at 19:03:33 on 9/3/07) 300 450 200 400 Temperature Change (°F) 100 350 0 300 Load (MW) -100 250 -200 200 -300 150 -400 100 LTS-100 Based Temperature Change Estimated Boiler Temperature Change -500 50 Load -600 0 09/02/07 09/03/07 09/03/07 09/03/07 09/03/07 09/04/07 09/04/07 18:00 00:00 06:00 12:00 18:00 00:00 06:00 Date/Time

  15. High Temperature Spectrum BML 2 1.5 1 Absorbance 0.5 0 Feature 1 Feature 2 Window Window -0.5 0 50 100 150 200 250 300 350 400 450 Time (usec)

  16. High Temperature Spectrum BML Comparison with Calibration Spectra 2.5 Full Scale, Measured 2637 °F Calibration, TC = 2271 °F Cal: 2271 °F 2 Calibration, TC = 2578 °F Full Scale: 2637 °F Calibration, TC = 2788 °F Cal: 2578 °F Normalized Absorbance Cal: 2788 °F 1.5 1 0.5 0 -0.5 0 50 100 150 200 250 300 350 400 450 Time (usec)

  17. High Temperature Spectrum BML Comparison with Calibration Spectra (Feature 2) 2 Full Scale, Measured: 2637 °F Calibration, TC = 2271 °F Calibration, TC = 2578 °F Calibration, TC = 2788 °F 1.5 Cal: 2271 °F Normalized Absorbance Cal: 2578 °F 1 Cal: 2788 °F Full Scale: 2637 °F 0.5 0 Feature 2 Window -0.5 300 310 320 330 340 350 360 370 380 Time (usec)

  18. Potential Error in Baseline Fit BML Full scale detector signal and baseline at 2637 ° F 0.07 Regions Used for Baseline Calculation 0.06 Computed Baseline 0.05 Notional Improved Baseline 0.04 Volts 0.03 Detector Signal 0.02 0.01 Feature 1 Feature 2 0 0 50 100 150 200 250 300 350 400 450 500 Time (usec)

  19. Observations BML • Able to detect small changes in boiler temperatures due to load changes • Absolute temperature levels are higher than expected values. Possible causes include: • Improper baseline fit • Ambient H 2 O not removed during calibration • Possible temperature non-uniformities distorting temperature measurement • Laser Alignment System functions nominally • No significant build-up on optical windows. Some loose slag accumulated in instrumentation ports

  20. Oxy-Fuel Testing BML • GOx – JP8 Detector Optics • Nominal heat Enclosure release: 18.8 MMBTU/hr Launch Oxy-Fuel Optics Combustor Enclosure • Path length: 194” • Burner ID: 6.5” Air Reduction Tubes (Purged with N2) • Beam 4” downstream Fiber Optic Cable from exit plane • Single pass

  21. BML Oxy-Fuel Generator Firing

  22. Typical Initial Absorption Spectra BML Effect on peaks due to variations in O/F ratio evident 0.03 O/F=1.47 Feature 2 O/F=1.53 0.025 O/F=1.62 Feature 1 0.02 0.015 Absorbance 0.01 0.005 0 -0.005 -0.01 4 9 14 19 24 29 34 39 Time (usec)

  23. Conclusions BML • System is nearly fully functional for coal-fired power plant application • Initial Oxy-Fuel testing results suggest temperature measurements are feasible with further system improvements

  24. Future Work BML • Additional studies regarding discrepancy between expected and measured temperatures in power plant application • Improve baseline fit method • Multi-pass configuration for oxy-fuel to improve signal quality • System recalibration • Ambient absorption removed • New laser controller module

  25. Acknowledgements BML • Ken Stuckmeyer, Ameren • Ameren Sioux Station Personnel • Ron Mai and Thomas Rafferty, AES Huntington Beach

  26. Charles “Glen” May Dec 11, 1962 – Jul 26, 2007 AES Huntington Beach, Huntington Beach, CA Jul 16, 2007

  27. BML Questions / Comments?

  28. Laser Alignment System BML • Alignment maintained during load changes • Raster Scan mode 11% of time 2 500 450 1.5 400 Change in Scanner Angle (deg) 350 1 300 Load (MW) 0.5 250 200 0 150 100 -0.5 Tilt, Command Pan, Command 50 Load -1 0 09/02/07 09/03/07 09/03/07 09/03/07 09/03/07 09/04/07 09/04/07 18:00 00:00 06:00 12:00 18:00 00:00 06:00 Date/Time

Recommend


More recommend