Average-case complexity of Maximum Weighted Independent Sets D. Gamarnik, D. Goldberg, T. Weber (MIT) Physics of Algorithms ’09, Santa Fe Wednesday, September 2, 2009
Outline • Average-case analysis of computational complexity. Independent Sets • A ‘corrected’ BP algorithm: the cavity expansion • Results: sufficient condition, hardness results. • Conclusion Wednesday, September 2, 2009
Combinatorial Optimization with Random Costs • Goal: Study relation between randomness and computational complexity • Problems of interest: combinatorial optimization on graph - here: Maximum Weighted Independent Set • Rather than random graph, random costs • Identify relations between graph structure, cost distribution, and complexity • Techniques used: ‘message-passing’ algorithm, correlation decay analysis. Wednesday, September 2, 2009
Max Weight Independent Sets • Graph (V,E), weights W ∈ R | V | + • Independent Set U: ∀ u, v ∈ U, ( u, v ) �∈ E • Max-Weight Independent Set (MWIS): given weights W, find U which maximizes � v ∈ U W v • Our setting: weights are random i.i.d variables from a joint distribution F • Arbitrary graph of bounded degree ∆ • Similar models in Gamarnik, Nowicki, Swircz [05], Sanghavi, Shah, Willsky [08] Wednesday, September 2, 2009
Hardness facts • NP-hard, even for ∆ =3 • Poly-time approx algorithm of ratio : finds an IS ˜ U α such that W ( U ) U ) < α W ( ˜ • Poly-time Approximation Scheme: for all , α > 1 there exists a approx. algorithm of ratio α • Hastad [99] NP-hard to approximate within n β , β < 1 • Trevisan [01] NP-hard to approximate within ∆ 2 O ( √ log ∆ ) Wednesday, September 2, 2009
A first result Theorem: Assume , P ( W > t ) = exp( − t ) ∆ ≤ 3 The problem can be approximated in polynomial time: for O ( | V | 2 ǫ − 2 ) any , in , there exists an algo. which finds an I.S. I ǫ > 0 such that P ( W ( I ∗ ) W ( I ) > 1 + ǫ ) < ǫ * Linear in |V| (with parallel computation, constant computation time) * Case exceptional? ∆ ≤ 3 * Case of Exponential weights exceptional? ~ Only distribution which works? ~ MWIS always easy with random weights? Wednesday, September 2, 2009
Message passing for MWIS !" $" %" !#" • Graphical model formula:on of MWIS: p ( x ) = 1 � � i ∈ V exp( w i x i ) i,j ∈ E 1 { x i + x j ≤ 1 } Z • Max‐product (BP): � � k ∈ N i ,k � = i µ k → i (0) , e w i � � µ i → j (0) = max k ∈ N i ,k � = i µ k → i (1) µ i → j (1) = � k ∈ N i ,k � = i µ k → i (0) set M i → j = log( µ i → j (0) µ i → j (1) ) then: M i → j = max(0 , W i − � k ∈ N i ,k � = j M k → j ) 7 Wednesday, September 2, 2009
LP relaxa:on for MWIS ‐ connec:on with BP • IP formula:on of MWIS: � max x i W i x i s.t. ∀ ( i, j ) ∈ E, x i + x j ≤ 1 ∀ i, x i ∈ { 0 , 1 } • LP relaxa:on: � max x i W i x i s.t. ∀ ( i, j ) ∈ E, x i + x j ≤ 1 ∀ i, 0 ≤ x i ≤ 1 • LP is :ght at variable i if x i ∈ { 0 , 1 } • Fact [Sanghavi, Shah, Willsky]: If BP converges at variable i, then the LP is :ght at i • Converse: if the LP is not :ght, then BP does not converge IP solu:on: one node, opt. cost: 1 LP solu:on: (1/2,1/2,1/2), opt. cost: 3/2>1 : LP not :ght 8 Wednesday, September 2, 2009
The Cavity Expansion: a corrected BP – We try to compute exactly B G ( i ) = W ( I ∗ G ) − W ( I ∗ G \{ i } ) if >0, then , otherwise (w.p.1) i ∈ I ∗ i �∈ I ∗ G G W ( I ∗ G ) = max( W i + W ( I ∗ G \{ i,j,k,l } , W ( I ∗ G \{ i } ) !" !" !" #" %" #" %" #" %" $ $ $ W ( I ∗ G \{ i } ) − 9 Wednesday, September 2, 2009
The Cavity Expansion: a corrected BP � �� – So: � B G ( i ) = max 0 , W i − W ( I ∗ G \{ i } ) − ( W ( I ∗ G \{ i,j,k,l } ) !" !" #" %" #" %" − $ $ !" $" !" $" − # # 10 Wednesday, September 2, 2009
The Cavity Expansion: a corrected BP W ( I ∗ G \{ i } ) − W ( I ∗ G \{ i,j,k,l } ) = !" $" !" $" − # # W ( I ∗ G \{ i } ) − W ( I ∗ G \{ i,j } ) + !" $" + !" $" − # # W ( I ∗ G \{ i,j } ) − W ( I ∗ G \{ i,j,k } ) + !" $" !" $" + − # # W ( I ∗ G \{ i,j,k } ) − W ( I ∗ G \{ i,j,k,l } ) !" $" !" $" − # # 11 Wednesday, September 2, 2009
The Cavity Expansion: a corrected BP W ( I ∗ G \{ i } ) − W ( I ∗ G \{ i,j,k,l } ) = !" $" !" $" − # # W ( I ∗ G \{ i } ) − W ( I ∗ G \{ i,j } ) + !" $" + !" $" − # # � � = B G \{ i } ( j ) W ( I ∗ G \{ i,j } ) − W ( I ∗ G \{ i,j,k } ) + !" $" !" $" + − # # � � = B G \{ i,j } ( k ) W ( I ∗ G \{ i,j,k } ) − W ( I ∗ G \{ i,j,k,l } ) !" $" !" $" − # # � � = B G \{ i,j,k } ( l ) 12 Wednesday, September 2, 2009
Cavity Expansion: Summary • Cavity Expansion (for IS): B G ( i ) = max(0 , W i − B G \{ i } ( j ) − B G \{ i,j } ( k ) − B G \{ i,j,k } ( l )) • BP (for IS): M G ( i ) = max(0 , W i − M G ( j ) − M G ( k ) − M G ( l )) • Generaliza:on for arbitrary op:miza:on • Similar approaches (for coun:ng): Weitz (06), Baya:,Gamarnik,Katz, Nair, Tetali (07), Jung and Shah (07) • CE always converges, and is correct at termina:on • caveat: running :me O ( ∆ | V | ) • Fix: interrupt a^er a fixed number of itera:ons t 13 Wednesday, September 2, 2009
Correla:on Decay analysis • Let be the r‐step approx of B r G ( i ) B G ( i ) • Defini:on: System exhibits correla:on decay if | B r G ( i ) − B G ( i ) | → 0 exponen:ally fast (in r) u • Implies: wether u is in the MWIS is asympto:cally independent of the graph beyond a certain boundary 14 Wednesday, September 2, 2009
Correla:on Decay analysis • Let be the r‐step approx of B r G ( i ) B G ( i ) • Defini:on: System exhibits correla:on decay if | B r G ( i ) − B G ( i ) | → 0 exponen:ally fast (in r) u • Implies: wether u is in the MWIS is asympto:cally independent of the graph beyond a certain boundary 15 Wednesday, September 2, 2009
Correla:on Decay analysis • Let be the r‐step approx of B r G ( i ) B G ( i ) • Defini:on: System exhibits correla:on decay if | B r G ( i ) − B G ( i ) | → 0 exponen:ally fast (in r) u • Implies: wether u is in the MWIS is asympto:cally independent of the graph beyond a certain boundary 16 Wednesday, September 2, 2009
Correla:on Decay analysis • Let be the r‐step approx of B r G ( i ) B G ( i ) • Defini:on: System exhibits correla:on decay if | B r G ( i ) − B G ( i ) | → 0 exponen:ally fast (in r) u • Implies: wether u is in the MWIS is asympto:cally independent of the graph beyond a certain boundary I ∗ = { i : B G ( i ) > 0 } • Recall • Candidate solu:on: I r = { i : B r G ( i ) > 0 } 17 Wednesday, September 2, 2009
Proof sketch of near‐op:mality • Introduce ‘Lyapunov’ func:on L G ( i ) = E [exp( − B G ( i ))] • From CE and expo weights assump:on, find a recursion on L G ( i ) the : L G ( i ) = 1 − 1 / 2( L G \{ i } ( j ) L G \{ i,j } ( k )) • This implies a non‐expansion of the recursion of L G • Prune a small frac:on of the nodes δ • This implies a contrac:on of factor (1 − δ ) (1 − δ ) r + δ • A^er r steps, error is • minimize delta as a func:on of r => correla:on decay • Final steps: prove that if , then B r I r ≈ I ∗ G ( i ) ≈ B G ( i ) 18 Wednesday, September 2, 2009
Recommend
More recommend