automorphisms of extremal codes
play

Automorphisms of extremal codes Gabriele Nebe Lehrstuhl D f ur - PowerPoint PPT Presentation

Automorphisms of extremal codes Gabriele Nebe Lehrstuhl D f ur Mathematik ALCOMA 15 Plan The use of symmetry Beautiful objects have symmetries. Symmetries help to reduce the search space for nice objects and hence make huge


  1. Automorphisms of extremal codes Gabriele Nebe Lehrstuhl D f¨ ur Mathematik ALCOMA 15

  2. Plan The use of symmetry ◮ Beautiful objects have symmetries. ◮ Symmetries help to reduce the search space for nice objects ◮ and hence make huge problems acessible to computations. The use of challenge problems ◮ Applications for classical theories and theorems such as ◮ Burnside orbit counting ◮ Invariant theory of finite groups ◮ Theory of quadratic forms ◮ Representation theory of finite groups ◮ Provide a practical introduction to abstract theory.

  3. Self-dual codes Definition ◮ A linear binary code C of length n is a subspace C ≤ F n 2 . ◮ The dual code of C is C ⊥ := { x ∈ F n 2 | ( x, c ) := � n i =1 x i c i = 0 for all c ∈ C } ◮ C is called self-dual if C = C ⊥ . ◮ Aut( C ) = { σ ∈ S n | σ ( C ) = C } . Facts ◮ dim( C ) + dim( C ⊥ ) = n so C = C ⊥ ⇒ dim( C ) = n 2 . ◮ Let 1 = (1 , . . . , 1) . Then ( c, c ) = ( c, 1 ) . ◮ So if C = C ⊥ then 1 ∈ C .

  4. Doubly-even self-dual codes The Hamming weight. ◮ The Hamming weight of a codeword c ∈ C is wt( c ) := |{ i | c i � = 0 }| . ◮ wt( c ) ≡ 2 ( c, c ) , so C ⊆ C ⊥ implies wt( C ) ⊂ 2 Z . ◮ C is called doubly-even if wt( C ) ⊂ 4 Z . ◮ Fact: C = C ⊥ ≤ F n 2 doubly-even ⇒ n ∈ 8 Z . ◮ The minimum distance d ( C ) := min { wt( c ) | 0 � = c ∈ C } . ◮ A self-dual code C ≤ F n 2 is called extremal if d ( C ) = 4 + 4 ⌊ n 24 ⌋ . ◮ The weight enumerator of C is p C := � c ∈ C x n − wt( c ) y wt( c ) ∈ C [ x, y ] n .

  5. Examples for self-dual doubly-even codes Hamming Code   1 0 0 0 0 1 1 1 0 1 0 0 1 0 1 1   h 8 :   0 0 1 0 1 1 0 1   0 0 0 1 1 1 1 0 the extended Hamming code, the unique doubly-even self-dual code of length 8, p h 8 ( x, y ) = x 8 + 14 x 4 y 4 + y 8 and Aut( h 8 ) = 2 3 : L 3 (2) . Golay Code The binary Golay code G 24 is the unique doubly-even self-dual code of length 24 with minimum distance ≥ 8 . Aut( G 24 ) = M 24 p G 24 = x 24 + 759 x 16 y 8 + 2576 x 12 y 12 + 759 x 8 y 16 + y 24

  6. Application of invariant theory c ∈ C x n − wt( c ) y wt( c ) ∈ C [ x, y ] n . The weight enumerator of C is p C := � Theorem (Gleason, ICM 1970) Let C = C ⊥ ≤ F n 2 be doubly even. Then d ( C ) ≤ 4 + 4 ⌊ n 24 ⌋ Doubly-even self-dual codes achieving equality are called extremal.

  7. Application of invariant theory c ∈ C x n − wt( c ) y wt( c ) ∈ C [ x, y ] n . The weight enumerator of C is p C := � Theorem (Gleason, ICM 1970) Let C = C ⊥ ≤ F n 2 be doubly even. Then d ( C ) ≤ 4 + 4 ⌊ n 24 ⌋ Doubly-even self-dual codes achieving equality are called extremal. Proof: ◮ p C ( x, y ) = p C ( x, iy ) , p C ( x, y ) = p C ⊥ ( x, y ) = p C ( x + y 2 , x − y 2 ) √ √ � 1 � 1 � � 0 1 1 ◮ G 192 := � , � . √ 0 i 1 − 1 2 ◮ p C ∈ Inv( G 192 ) = C [ p h 8 , p G 24 ] ◮ ∃ ! f ∈ C [ p h 8 , p G 24 ] 8 m such that f (1 , y ) = 1 + 0 y 4 + . . . + 0 y 4 ⌊ m 3 ⌋ + a m y 4 ⌊ m 3 ⌋ +4 + b m y 4 ⌊ m 3 ⌋ +8 + . . . ◮ a m > 0 for all m

  8. Application of invariant theory c ∈ C x n − wt( c ) y wt( c ) ∈ C [ x, y ] n . The weight enumerator of C is p C := � Theorem (Gleason, ICM 1970) Let C = C ⊥ ≤ F n 2 be doubly even. Then d ( C ) ≤ 4 + 4 ⌊ n 24 ⌋ Doubly-even self-dual codes achieving equality are called extremal. Proof: ◮ p C ( x, y ) = p C ( x, iy ) , p C ( x, y ) = p C ⊥ ( x, y ) = p C ( x + y 2 , x − y 2 ) √ √ � 1 � 1 � � 0 1 1 ◮ G 192 := � , � . √ 0 i 1 − 1 2 ◮ p C ∈ Inv( G 192 ) = C [ p h 8 , p G 24 ] ◮ ∃ ! f ∈ C [ p h 8 , p G 24 ] 8 m such that f (1 , y ) = 1 + 0 y 4 + . . . + 0 y 4 ⌊ m 3 ⌋ + a m y 4 ⌊ m 3 ⌋ +4 + b m y 4 ⌊ m 3 ⌋ +8 + . . . ◮ a m > 0 for all m Proposition b m < 0 for all m ≥ 494 so there is no extremal code of length ≥ 3952 .

  9. Automorphism groups of extremal codes length 8 24 32 40 48 72 80 96 104 ≥ 3952 d ( C ) 4 8 8 8 12 16 16 20 20 extremal h 8 G 24 5 16 , 470 QR 48 ? ≥ 15 ? ≥ 1 0 Aut( C ) = { σ ∈ S n | σ ( C ) = C } is the automorphism group of C ≤ F n 2 . ◮ Aut( h 8 ) = 2 3 .L 3 (2) ◮ Aut( G 24 ) = M 24 ◮ Length 32: L 2 (31) , 2 5 .L 5 (2) , 2 8 .S 8 , 2 8 .L 2 (7) . 2 , 2 5 .S 6 . ◮ Length 40: 10,400 extremal codes with Aut = 1 . ◮ Aut( QR 48 ) = L 2 (47) . ◮ Sloane (1973): Is there a (72 , 36 , 16) self-dual code? ◮ If C is such a (72 , 36 , 16) code then Aut( C ) has order ≤ 5 .

  10. Automorphism groups of extremal codes length 8 24 32 40 48 72 80 96 104 ≥ 3952 d ( C ) 4 8 8 8 12 16 16 20 20 extremal h 8 G 24 5 16 , 470 QR 48 ? ≥ 15 ? ≥ 1 0 Aut( C ) = { σ ∈ S n | σ ( C ) = C } is the automorphism group of C ≤ F n 2 . ◮ Aut( h 8 ) = 2 3 .L 3 (2) ◮ Aut( G 24 ) = M 24 ◮ Length 32: L 2 (31) , 2 5 .L 5 (2) , 2 8 .S 8 , 2 8 .L 2 (7) . 2 , 2 5 .S 6 . ◮ Length 40: 10,400 extremal codes with Aut = 1 . ◮ Aut( QR 48 ) = L 2 (47) . ◮ Sloane (1973): Is there a (72 , 36 , 16) self-dual code? ◮ If C is such a (72 , 36 , 16) code then Aut( C ) has order ≤ 5 . ◮ There is no beautiful (72 , 36 , 16) self-dual code.

  11. The Type of an automorphism Definition Let σ ∈ S n of prime order p . Then σ is of Type ( z, f ) , if σ has z p -cycles and f fixed points. zp + f = n . ◮ Let p be odd, σ = (1 , 2 , .., p )( p + 1 , .., 2 p ) ... (( z − 1) p + 1 , .., zp ) . 2 = Fix( σ ) ⊥ E ( σ ) ∼ = F z + f ⊥ F z ( p − 1) ◮ F n with 2 2 1 . . . 1 0 . . . 0 . . . 0 . . . 0 0 0 . . . 0 0 . . . 0 1 . . . 1 . . . 0 . . . 0 0 0 . . . 0 0 . . . 0 0 . . . 0 . . . 1 . . . 1 0 0 . . . 0 Fix( σ ) = � 0 . . . 0 0 . . . 0 . . . 0 . . . 0 1 0 . . . 0 � 0 . . . 0 0 . . . 0 . . . 0 . . . 0 0 1 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0 0 0 . . . 1 � �� � � �� � � �� � p p p E ( σ ) = Fix( σ ) ⊥ = { ( x 1 , . . . , x p , x p +1 , . . . , x 2 p , . . . , x ( z − 1) p +1 , . . . , x zp , 0 , . . . , 0) | x 1 + . . . + x p = x p +1 + . . . + x 2 p = . . . = x ( z − 1) p +1 + . . . + x zp = 0 }

  12. Two self-dual codes of smaller length ◮ Let C ≤ F n 2 and p an odd prime, ◮ σ = (1 , 2 , .., p )( p + 1 , .., 2 p ) ... (( z − 1) p + 1 , .., zp ) ∈ Aut( C ) . ◮ Then C = C ∩ Fix( σ ) ⊕ C ∩ E ( σ ) =: Fix C ( σ ) ⊕ E C ( σ ) . c zp +1 . . . c n ) ∈ C } ∼ Fix C ( σ ) = { ( c p . . . c p c 2 p . . . c 2 p . . . c zp . . . c zp = � �� � � �� � � �� � p p p = { ( c p c 2 p . . . c zp c zp +1 . . . c n ) ∈ F z + f π (Fix C ( σ )) | c ∈ Fix C ( σ ) } 2 ◮ and C ⊥ = C ⊥ ∩ Fix( σ ) ⊕ C ⊥ ∩ E ( σ ) . ◮ C = C ⊥ then Fix C ( σ ) is self-dual in Fix( σ ) and E C ( σ ) is (Hermitian) self-dual in E ( σ ) . Fact π (Fix C ( σ )) is a self-dual code of length z + f , in particular dim(Fix C ( σ )) = z + f and | Fix C ( σ ) | = 2 ( z + f ) / 2 . 2

  13. Application of Burnside’s orbit counting theorem Theorem (Conway, Pless, 1982) Let C = C ⊥ ≤ F n 2 , σ ∈ Aut( C ) of odd prime order p and Type ( z, f ) . 2 ( z + f ) / 2 ≡ 2 n/ 2 Then (mod p ) . Proof: Apply orbit counting: � 1 The number of G -orbits on a finite set M is g ∈ G | Fix M ( g ) | . | G | Here G = � σ � , M = C , Fix C ( g ) = Fix C ( σ ) for all 1 � = g ∈ G , and the p (2 n/ 2 + ( p − 1)2 ( z + f ) / 2 ) ∈ N . number of � σ � -orbits on C is 1 Corollary C = C ⊥ ≤ F n 2 , p > n/ 2 an odd prime divisor of | Aut( C ) | , then p ≡ ± 1 (mod 8) . Here z = 1 , f = n − p , ( z + f ) / 2 = ( n − ( p − 1)) / 2 , so 2 ( p − 1) / 2 is 1 mod p and hence 2 must be a square modulo p .

  14. Application of quadratic forms Remark ◮ C = C ⊥ ⇒ 1 = (1 , . . . , 1) ∈ C , since ( c, c ) = ( c, 1 ) . ◮ If C is self-dual then n = 2 dim( C ) is even and 1 ∈ C ⊥ = C ⊂ 1 ⊥ = { c ∈ F n 2 | wt( c ) even } . ◮ Self-dual doubly-even codes correspond to totally isotropic subspaces in the quadratic space E n − 2 := ( 1 ⊥ / � 1 � , q ) , q ( c + � 1 � ) = 1 2 wt( c ) (mod 2) ∈ F 2 . ◮ C = C ⊥ ≤ F n 2 doubly-even ⇒ n ∈ 8 Z . Theorem (A. Meyer, N. 2009) Let C = C ⊥ ≤ F n 2 doubly-even. Then Aut( C ) ≤ Alt n .

  15. Application of quadratic forms: Some background ◮ Assume n ∈ 8 Z . ◮ E n − 2 := ( 1 ⊥ / � 1 � , q ) , q ( c + � 1 � ) = 1 2 wt( c ) (mod 2) ∈ F 2 . is an ( n − 2) -dimensional quadratic space over F 2 . ◮ There is X ≤ E n − 2 with X = X ⊥ and q ( X ) = { 0 } call such X self-dual isotropic. ◮ C = C ⊥ ≤ F n 2 , doubly-even, then X = C/ � 1 � ≤ E n − 2 is self-dual isotropic. ◮ O ( E n − 2 ) = { g ∈ GL( E n − 2 ) | q ( g ( x )) = q ( x ) for all x ∈ E n − 2 } the orthogonal group of E n − 2 . Definition Fix X 0 ≤ E n − 2 self-dual isotropic. D : O ( E n − 2 ) → { 1 , − 1 } , D ( g ) := ( − 1) dim( X 0 / ( X 0 ∩ g ( X 0 ))) the Dickson invariant. Fact g ∈ Stab O ( E n − 2 ) ( X ) ⇒ D ( g ) = 1 .

Recommend


More recommend