asymmetric proximal point algorithms with moving proximal
play

Asymmetric Proximal Point Algorithms with Moving Proximal Centers - PowerPoint PPT Presentation

Asymmetric Proximal Point Algorithms with Moving Proximal Centers Deren Han (handeren@njnu.edu.cn) School of Mathematical Sciences, Nanjing Normal University Nanjing, 210023, China. September 2, 2014 Deren Han (NJNU) Asymmetric PPA September


  1. Asymmetric Proximal Point Algorithms with Moving Proximal Centers Deren Han (handeren@njnu.edu.cn) School of Mathematical Sciences, Nanjing Normal University Nanjing, 210023, China. September 2, 2014 Deren Han (NJNU) Asymmetric PPA September 2, 2014 1 / 26

  2. Outline Introduction 1 APPA with Moving Proximal Centers 2 Worst-case Rate of Convergence 3 Linear Convergence 4 Two Concrete Algorithms 5 The Saddle Point Problem Multiblock Decomposible Convex Optimization Conclusion 6 Deren Han (NJNU) Asymmetric PPA September 2, 2014 2 / 26

  3. VI ( x − x ∗ ) T F ( x ∗ ) ≥ 0 , ∀ x ∈ Ω , (1) Ω : a nonempty, closed and convex set in R N ; F : a continuous and monotone mapping defined on R N . Deren Han (NJNU) Asymmetric PPA September 2, 2014 3 / 26

  4. VI ( x − x ∗ ) T F ( x ∗ ) ≥ 0 , ∀ x ∈ Ω , (1) Ω : a nonempty, closed and convex set in R N ; F : a continuous and monotone mapping defined on R N . Examples : Equations, Complementarity Problems, Constrained Optimization Problems, Saddle Point Problems, etc. Deren Han (NJNU) Asymmetric PPA September 2, 2014 3 / 26

  5. Proximal Point Algorithms Classical PPA: � � F ( x k + 1 ) + 1 ( x k + 1 − x k ) ( x − x k + 1 ) T ≥ 0 , ∀ x ∈ Ω , (2) c k c k is the proximal parameter and x k is the proximal center. 1 Deren Han (NJNU) Asymmetric PPA September 2, 2014 4 / 26

  6. Proximal Point Algorithms Classical PPA: � � F ( x k + 1 ) + 1 ( x k + 1 − x k ) ( x − x k + 1 ) T ≥ 0 , ∀ x ∈ Ω , (2) c k c k is the proximal parameter and x k is the proximal center. 1 A General Version: F ( x k + 1 ) + M k ( x k + 1 − x k ) ( x − x k + 1 ) T � � ≥ 0 , ∀ x ∈ Ω , (3) where the metric proximal parameter M k ∈ R n × n is positive definite and symmetric. Deren Han (NJNU) Asymmetric PPA September 2, 2014 4 / 26

  7. Proximal Point Algorithms Classical PPA: � � F ( x k + 1 ) + 1 ( x k + 1 − x k ) ( x − x k + 1 ) T ≥ 0 , ∀ x ∈ Ω , (2) c k c k is the proximal parameter and x k is the proximal center. 1 A General Version: F ( x k + 1 ) + M k ( x k + 1 − x k ) ( x − x k + 1 ) T � � ≥ 0 , ∀ x ∈ Ω , (3) where the metric proximal parameter M k ∈ R n × n is positive definite and symmetric. M k := 1 / c k M , c k F ( x k + 1 ) + M ( x k + 1 − x k ) ( x − x k + 1 ) T � � ≥ 0 , ∀ x ∈ Ω . (4) Deren Han (NJNU) Asymmetric PPA September 2, 2014 4 / 26

  8. Role of M in Algorithms: Make the subproblems easier: Preconditioner: T. Pock and A. Chambolle [1]. Decomposable of the subproblems. [1] T. Pock and A. Chambolle. Diagonal preconditioning for first order primal-dual algorithms in convex optimization , IEEE Inter. Con. Comput. Vis., 2011, pp. 1762-1769. Deren Han (NJNU) Asymmetric PPA September 2, 2014 5 / 26

  9. A simple example The saddle point problem: v ∈V Φ( u , v ) := f ( u ) + v T Au − g ( v ) . min u ∈U max (5) Deren Han (NJNU) Asymmetric PPA September 2, 2014 6 / 26

  10. A simple example The saddle point problem: v ∈V Φ( u , v ) := f ( u ) + v T Au − g ( v ) . min u ∈U max (5) PDHG scheme:  u k − τ A T v k , u k + 1 ˆ =      arg min u ∈U f ( u ) + 1 u k + 1 u k + 1 � 2 , = 2 τ � u − ˆ      u k + 1 + θ ( u k + 1 − u k ) , u k + 1 (6) ¯ =   v k + σ A ¯  v k + 1 u k + 1 , ˆ =       v k + 1 arg min v ∈V g ( v ) + 1 v k + 1 � 2 = 2 σ � v − ˆ  Deren Han (NJNU) Asymmetric PPA September 2, 2014 6 / 26

  11. A simple example The saddle point problem: v ∈V Φ( u , v ) := f ( u ) + v T Au − g ( v ) . min u ∈U max (5) PDHG scheme:  u k − τ A T v k , u k + 1 ˆ =      arg min u ∈U f ( u ) + 1 u k + 1 u k + 1 � 2 , = 2 τ � u − ˆ      u k + 1 + θ ( u k + 1 − u k ) , u k + 1 (6) ¯ =   v k + σ A ¯  v k + 1 u k + 1 , ˆ =       v k + 1 arg min v ∈V g ( v ) + 1 v k + 1 � 2 = 2 σ � v − ˆ  PPA point of view   1 − A T τ I m  . M := (7)  1 − θ A σ I n Deren Han (NJNU) Asymmetric PPA September 2, 2014 6 / 26

  12. Difficulty in Analysis: Can not bound the progress of consecutive iterations using M -norm; Deren Han (NJNU) Asymmetric PPA September 2, 2014 7 / 26

  13. Difficulty in Analysis: Can not bound the progress of consecutive iterations using M -norm; Remedies: Correction steps; Deren Han (NJNU) Asymmetric PPA September 2, 2014 7 / 26

  14. Difficulty in Analysis: Can not bound the progress of consecutive iterations using M -norm; Remedies: Correction steps; Our Motivation: Schemes without corrections. Deren Han (NJNU) Asymmetric PPA September 2, 2014 7 / 26

  15. Definitions Let F ( · ) be a mapping from R N into R N . Then, F ( · ) is said to be Monotone: if ( F ( x ) − F ( y )) T ( x − y ) ≥ 0 ∀ x , y ∈ R N ; Strongly monotone with modulus µ if ( F ( x ) − F ( y )) T ( x − y ) ≥ µ � x − y � 2 ∀ x , y ∈ R N . Lipschitz continuous: if ∀ x , y ∈ R N ; � F ( x ) − F ( y ) � ≤ L � x − y � Co-coercive with modulus σ > 0 if ( F ( x ) − F ( y )) T ( x − y ) ≥ σ � F ( x ) − F ( y ) � 2 ∀ x , y ∈ R N . (8) Deren Han (NJNU) Asymmetric PPA September 2, 2014 8 / 26

  16. Reformulation M s ≡ 1 2 ( M + M T ) : The symmetric part of M . Define C := M − 1 / 2 ( M − M s ) M − 1 / 2 ; s s K ≡ M 1 / 2 Ω = { M 1 / 2 x : x ∈ Ω } ; s s K ∗ ≡ M 1 / 2 Ω ∗ = { M 1 / 2 x ∗ : x ∗ ∈ Ω ∗ } ; s s F M ( y ) ≡ M − 1 / 2 F ( M − 1 / 2 ˜ y ) , ∀ y ∈ K , ; s s For any x ∈ Ω , we define y := M 1 / 2 x . Thus, s y ′ ≡ M 1 / 2 x ′ , y k + 1 ≡ M 1 / 2 x k + 1 , and y k ≡ M 1 / 2 x k . (9) s s s Then, a vector x ∗ is a solution of the variational inequality (1) if and only if y ∗ := M 1 / 2 x ∗ is a solution of the variational inequality of s finding y ∈ K such that ( y ′ − y ∗ ) T ˜ F M ( y ∗ ) ≥ 0 , ∀ y ′ ∈ K . (10) The solution set of (10) is thus given by K ∗ . Deren Han (NJNU) Asymmetric PPA September 2, 2014 9 / 26

  17. A Useful Lemma Lemma 1 Let the mapping G : R n → R n be co-coercive on a nonempty, closed, convex subset W in R n with modulus σ > 1 / 2 , Then, for any x , y , z ∈ W , we have ( x − y ) T ( G ( z ) − G ( y )) ≥ − ν 2 � x − z � 2 , (11) where ν is an arbitrary number satisfying 0 < 1 2 σ < ν < 1 . (12) Deren Han (NJNU) Asymmetric PPA September 2, 2014 10 / 26

  18. Co-Coerciveness Lemma 2 [Proposition 12.5.3](Facchinei and Pang 2003) The mapping α ˜ F M − C is co-coercive over K with modulus greater than 1 / 2 if either one of the following two conditions holds: F is Lipschitz continuous on Ω with modulus L and a τ ∈ ( 0 , 1 ) 1 exists such that, for all y 1 , y 2 ∈ K , F M ( y 1 ) − M − 1 / 2 MM − 1 / 2 � α ˜ F M ( y 2 ) − α ˜ ( y 2 − y 1 ) � ≤ τ � y 2 − y 1 � ; s s F ( x ) = Qx + q , for some positive semidefinite matrix Q ≡ D + E 2 with D positive definite and E symmetric, and 0 < � I n + H � < 2 , where H ≡ D − 1 / 2 ED − 1 / 2 Deren Han (NJNU) . Asymmetric PPA September 2, 2014 11 / 26 s s

  19. The Exact Version Deren Han (NJNU) Asymmetric PPA September 2, 2014 12 / 26

  20. The Exact Version Remark: The exact version of APPA-MPC (“APPA-MPC-E" in short): The proximal center in x k in classical PPA is shifted to x k − α M − 1 F ( x k ) in (3.1). Deren Han (NJNU) Asymmetric PPA September 2, 2014 12 / 26

  21. Convergence Lemma 3 The subproblem (3.1) of the APPA-MPC-E can be rewritten as ( y ′ − y k + 1 ) T [˜ F M ( y k + 1 ) + ( I + C )( y k + 1 − y k ) + α ˜ F M ( y k )] ≥ 0 , ∀ y ′ ∈ K . (13) Deren Han (NJNU) Asymmetric PPA September 2, 2014 13 / 26

  22. Convergence Lemma 3 The subproblem (3.1) of the APPA-MPC-E can be rewritten as ( y ′ − y k + 1 ) T [˜ F M ( y k + 1 ) + ( I + C )( y k + 1 − y k ) + α ˜ F M ( y k )] ≥ 0 , ∀ y ′ ∈ K . (13) Lemma 4 Let y ∗ be an arbitrary solution point in K ∗ .. Then, we have � y k + 1 − y ∗ � 2 ≤ � y k − y ∗ � 2 − ( 1 − ν ) � y k − y k + 1 � 2 , (14) where ν is an arbitrary number satisfying (12) . Deren Han (NJNU) Asymmetric PPA September 2, 2014 13 / 26

  23. The Inexact Version Deren Han (NJNU) Asymmetric PPA September 2, 2014 14 / 26

  24. Convergence Lemma 5 Let { x k } be the sequence generated by APPA-MPC-I. Then, there exist a positive scalar Γ such that the following inequality holds for any y ′ ∈ K : y k + 1 ) T (˜ y k + 1 − y k )+ α ˜ ( y ′ − ¯ y k + 1 )+( I + C )(¯ F M ( y k )) ≥ − ǫ k � y ′ − ¯ y k + 1 � 2 − Γ ǫ k . F M (¯ (15) Deren Han (NJNU) Asymmetric PPA September 2, 2014 15 / 26

  25. Convergence Lemma 5 Let { x k } be the sequence generated by APPA-MPC-I. Then, there exist a positive scalar Γ such that the following inequality holds for any y ′ ∈ K : y k + 1 ) T (˜ y k + 1 − y k )+ α ˜ ( y ′ − ¯ y k + 1 )+( I + C )(¯ F M ( y k )) ≥ − ǫ k � y ′ − ¯ y k + 1 � 2 − Γ ǫ k . F M (¯ (15) Theorem 6 The sequence { x k } generated by the APPA-MPC-I globally converges to a solution point of the variational inequality (1). Deren Han (NJNU) Asymmetric PPA September 2, 2014 15 / 26

Recommend


More recommend