Astrophysical sources of γ rays Isabelle Grenier University Paris Diderot & CEA Saclay (with great help from the Fermi collaboration) TAUP Rome 05/07/09
the GeV sky Fermi LAT 3 months: 205 bright (< 10 σ) sources 9 months, > 200 MeV: many more
the TeV sky
γ -ray source physics accreDon powered shock powered inducDon powered relaDvisDc jets parDcle acceleraDon relaDvisDc winds (non exclusive)
credits Fermi plots: • arxiv: Fermi collaboraDon, Abdo et al. • hOp://www.nasa.gov/mission_pages/GLAST/main/index.html HESS plots: • arxiv: Aharonian et al. • hOp://www.mpi‐hd.mpg.de/hfm/HESS/
γ -ray bursts Fermi look into fireballs from keV to mulD‐GeV energies 1000-2000 AU 1-6 AU X-rays prompt γ � 2 � ambient � 1 � medium > 100 MeV? Prompt � � 0.01-5 MeV optical 20 km Internal shocks Reverse shock r a d i Forward shock o fireball expansion, aYerglow evoluDon, X‐ray flashes, plateaux … and GeV puzzle
γ -ray bursts 7 long + 2 short GRB, from 8 keV to tens of GeV short & long GRB: similar phenomenology at high energy short GRB081024B intense, z = 4.35, to 13 GeV long GRB090323 (200s) radio to GeV afterglow z = 3.6 ✴ long GRB080825C afterglow long GRB080916C short GRB090510 intense, z = 4.35, to 13 GeV intense, z = 0.9
high-energy γ -ray afterglows aYer EGRET findings GRB080825C, the 1st GBM+LAT burst GeV γ rays: onset delay, hardening, quick decay suggesDve of aYerglow emission from reverse shock (SSC or ExC) time → 8-260 keV 0.26-5 MeV > 80 MeV PRELIMINARY
prompt spectra & Γ min short and long GRBs so far: single band spectra from keV to GeV ⇒ synchrotron dominates to late Dmes no quick arrival of SSC at E > 100 MeV (blast wave not cooled so quickly) no evidence for γ GeV + γ Band → e ± absorpDon or soYening ⇒ Γ ≥ 900 Γ ≥ 887 ± 21 short long GRB081024B GRB080916C ⇒ light jets
delayed & long-lasting prompt γ rays long ex: GRB080916C, → 1400 s short ex: GRB081024B 8 keV – 260 keV 260 keV – 5 MeV LAT raw LAT > 100 MeV LAT > 1 GeV T 0
prompt GeV delay (sub‐MeV, GeV) Dme correlaDon ⇒ closeby sources
prompt GeV delay (sub‐MeV, GeV) Dme correlaDon ⇒ closeby sources ? r e t f o s r e d r a h
prompt GeV delay (sub‐MeV, GeV) Dme correlaDon ⇒ closeby sources γγ absorption?... no softening or cutoff no GeV when hard X still ↑
prompt GeV delay (sub‐MeV, GeV) Dme correlaDon ⇒ closeby sources p + acceleration time then p + synchrotron or cascade emission
prompt GeV delay (sub‐MeV, GeV) Dme correlaDon ⇒ closeby sources SSC GeV afterglow tail?… no double bump
AGN families FSRQ (low M BH , large L acc )? Seyfert I NLR Seyfert II FR II dust dust torus torus BLR FR I radio-quiet AGN Bl Lac (large M BH , low L acc )?
AGN families FSRQ (low M BH , large L acc )? Seyfert I NLR Seyfert II FR II BLR FR I torus torus dust dust radio-quiet AGN Bl Lac (large M BH , low L acc )?
γ -ray AGN TeV: 27 Bl Lac + 1 FSRQ + 2 radiogalaxies (M87 + Cen A) GeV: 42 Bl Lac + 58 FSRQ + 4 uncertain + 2 radiogalaxies (NGC 1275 + Cen A) + ...
radio-loud Seyfert in γ rays! PMN J0948+0022 (Sey1 lines + narrow lines + radio‐loud variable core, z = 0.58) δ > 2.5 and θ < 22° Effelsberg OVRO Swift Fermi simultaneous low M BH = 10 6‐8 M ⊙ but high L/L Edd = 0.4 BLR low‐power FSRQ like disc ExC ⇒ acDve jet L BLR = 0.1 L disc any other? torus corona
jet questions fast spine Γ = 1 → 15 10 16 m 10 15 m slow MHD turbulent C beam S S spine-sheath or Ė kin carried by e ± , p + ? γ radiation deccelerating flow? e + pattern? terminal shock γ e - B energy density? population IC vs. syn bump if soft stat. 100 G ? ExC targets known t e k c ? B equip in slow jet? o s r k c n o y o t h t i l p s i b m a o ? i r C r a a v f d w i p o n h a o r i t p ? λ + p - r γ i o t l s u b m a 0 ± π γ TeV cutoff (but EBL), other cutoffs... Doppler factor? γ from time scale & γγ R e ± L γ B which E max (e ± )?
blazar sequence external IC … SSC trend for fainter, harder blue blazars (Bl Lacs) spectral hardening confirmed FSRQ → LBL → IBL → HBL Bl Lac unknown radiogal Fermi: FSRQ Bl Lac unknown radiogal
a lot of variability... all‐sky monitoring every 3h: 1/3 variable Fermi‐LAT sources, mostly off the plane only 33 former EGRET sources, 11 at GeV + TeV energies impressive mulD‐λ campaigns
… and a lot of confusion PKS 2155‐304 in flare state: X‐TeV Dght correlaDon (SSC) in low state: SSC 3 zones ⇒ no X‐TeV correlaDon expected, none seen, unlike in flare state ⇒ no opt‐TeV correlaDon expected, one seen ⇒ not synch. seeds ⇒ “ExC” where are the opDcal electrons? ATOM Swift-RXTE Fermi HESS F opt - Γ GeV F opt -F TeV E e < 118 GeV F X -F TeV F X - Γ GeV E e < 7.2 GeV not same time sampling
intrinsic breaks? Δα = 1.2 > 0.5 for cooling FSRQ internal jet γγ absorpDon << 200 eV + γ → e ± ? inner disc targets, r < 10‐100 R grav BLR re‐scaOered but no soY X‐ray cascade signs… Y R A N I M I L impact on blazar contribuDon to EBL E R P LBL HBL Y R A Y N R A I M N I L I M E R I L P E R P
NGC 1275 nearby radiogalaxy (alias Perseus A or 3C84) in the Perseus cluster with blazar‐like radio core piercing jets radio CXO 0.025” 26 lyr NRAO
NGC 1275 variability COS‐B, EGRET, Fermi (also radio) ⇒ AGN source standard red blazar SED, L jet (1p + /e ‐radiaDng ) ~ L kin (bubbles)
γ -ray radiogalaxies Cen A HESS Fermi radio search for SwiY‐Fermi HESS variabiliDes M87 variable with HESS
blazar evolution brightest blazar sample (> 10 σ) L -1.5 FSRQ: strong evoluDon L -0.5 <V/V max > = 0.645 ± 0.043 Bl Lac: no evoluDon? <V/V max > = 0.430 ± 0.055 but few objects L -1.1 disentangle BH evoluDon from accreDon state (collision induced? envt?)
accretion states AGN: broad-line SDSS quasars & LLAGN Körding et al. ’08
GeV μ QSO candidate μQSO accreDng from massive star? HESS 3.9 days no complete γγ absorpDon at TeV energies... Fermi
GeV μ QSO candidate μQSO accreDng from massive star? HESS 3.9 days no complete γγ absorpDon at TeV energies... Fermi
identity crisis same radiaDon processes: e + UV* → γ and p + p vent * → π 0 → 2γ same variability: dM acc /dt versus PWN compression stellar flux variaDon (IC emission and γ+γ → e ± ) same apparent morphology: jet vs. comet tail Mirabel ’08
γ -ray binaries LSI +61°303 26.5 day modulaDon VERITAS MAGIC D h a w a n ’ 0 6 Fermi Fermi Magic Veritas complex spectrum 6.3 ± 1.1 ± 0.5 GeV cut‐off searches for many binaries
pulsar wind nebulae Crab wind: Γ ~ 10 6‐7 10 38‐41 e ± s ‐1 IC 443 e ± + B → radio − X � � � � CMB TeV � � � � e ± + h ν � � � � IR → ≪ � � � � � � � � X γ � � � � e ± + h ν syn → γ + TeV CXO shocked wind evoluDon? wind acceleraDon (PoynDng to e ± )? (expansion, confinement, bow shock) relaDvisDc shock acceleraDon?
PWN ageing synchrotron losses dominate IC TeV emission to trace the wind to long distances PSR B1823-13 5 pc E -2 to E -2.4 50 pc HESS
pulsar jets synchrotron aging ⇒ “injecDon” parameters MSH 15‐52: 400 < Eemax < 730 TeV IC cooling to follow e± further out need MHD models for B(r, t) ROSAT Forot et al. ’06 ROSAT CXO
identification crisis SNR+PWN or mulD‐PSR/PWNe ex: HESS J1813-178, G12.82-0.02 HESS J1809-193
Recommend
More recommend