astr633 astrophysical techniques course slides
play

ASTR633 Astrophysical Techniques Course slides Chapter 5: - PowerPoint PPT Presentation

ASTR633 Astrophysical Techniques Course slides Chapter 5: Photometry (note: were not covering polarimetry see book if youre interested) Spectral Energy Distributions and Spectra Andrews et al. 2012, ApJ Aperture photometry


  1. ASTR633 Astrophysical Techniques Course slides Chapter 5: Photometry (note: we’re not covering polarimetry — see book if you’re interested)

  2. Spectral Energy Distributions and Spectra Andrews et al. 2012, ApJ

  3. Aperture photometry https://astrobites.org/2016/04/15/astroimagej-a-simple-and-powerful-tool-for-astronomical-image-analysis-and-precise-photometry/

  4. What is the “right” aperture size? King 1971, PASP

  5. The need for PSF photometry https://www.eso.org/public/usa/images/eso9953a/

  6. Photometric systems (optical) Figure 1 Schematic passbands of broad-band systems. Bessell 2005 Ann. Reviews

  7. Photometric systems (infrared) Bessell 2005 Ann. Reviews

  8. TABLE 2 Isophotal, Effective, Mean, and Pivot Wavelengths for the MKO-NIR Filters l iso l eff l eff � l 0 l pivot Filter ( m m) ( m m) ( m m) ( m m) ( m m) J ....... 1.250 1.241 1.243 1.248 1.247 H ....... 1.644 1.615 1.619 1.630 1.628 K � ...... 2.121 2.106 2.111 2.123 2.121 K s ...... 2.149 2.138 2.141 2.151 2.150 K ....... 2.198 2.186 2.190 2.202 2.200 L ....... 3.754 3.717 3.727 3.757 3.752 � M ...... 4.702 4.680 4.681 4.684 4.684 � Tokunaga & Vacca 2005 PASP

  9. Converting between different systems The observed flux density (magnitude) will di ff er from one telescope/camera to another due to the system response and also on the color of the object Red object Blue object

  10. Pan-STARRS Photometric System and SDSS, Johnson / Cousins (Vega), and 2MASS (Vega). Both 3.2. Stellar Color Transformations linear and quadratic versions are provided, with coefficients We used the synthetic magnitudes from the SEDs to fit for conversions between the Pan-STARRS1 photometric system y = A 0 + A 1 x + A 2 x 2 = B 0 + B 1 x. (6) Table 6 Pan-STARRS1 Bandpass Transformations x y A 0 A 1 A 2 ± B 0 B 1 ± ( g − r ) SDSS ( g P 1 − g SDSS ) − 0.011 − 0.125 − 0.015 0.006 − 0.012 − 0.139 0.007 ( g − r ) SDSS ( r P 1 − r SDSS ) 0.001 − 0.006 − 0.002 0.002 0.000 − 0.007 0.002 ( g − r ) SDSS ( i P 1 − i SDSS ) 0.004 − 0.014 0.001 0.003 0.004 − 0.014 0.003 ( g − r ) SDSS ( z P 1 − z SDSS ) − 0.013 0.040 − 0.001 0.009 − 0.013 0.039 0.009 ( g − r ) SDSS ( y P 1 − z SDSS ) 0.031 − 0.106 0.011 0.023 0.031 − 0.095 0.024 ( g − r ) SDSS ( w P 1 − r SDSS ) 0.018 0.118 − 0.091 0.012 0.012 0.039 0.025 ( B − V ) ( g P 1 − B ) − 0.108 − 0.485 − 0.032 0.011 − 0.104 − 0.523 0.013 ( B − V ) ( r P 1 − V ) 0.082 − 0.462 0.041 0.025 0.077 − 0.415 0.025 ( B − V ) ( r P 1 − R C ) 0.117 0.128 − 0.019 0.008 0.119 0.107 0.009 ( B − V ) ( i P 1 − I C ) 0.341 0.154 − 0.025 0.012 0.343 0.126 0.013 ( J 2MASS − H 2MASS ) ( z P 1 − J 2MASS ) 0.418 1.594 − 0.603 0.068 0.428 1.260 0.073 ( J 2MASS − H 2MASS ) ( y P 1 − J 2MASS ) 0.528 0.962 − 0.069 0.061 0.531 0.916 0.061 ( g − r ) P 1 ( g SDSS − g P 1 ) 0.013 0.145 0.019 0.008 0.014 0.162 0.009 ( g − r ) P 1 ( r SDSS − r P 1 ) − 0.001 0.004 0.007 0.004 − 0.001 0.011 0.004 ( g − r ) P 1 ( i SDSS − i P 1 ) − 0.005 0.011 0.010 0.004 − 0.004 0.020 0.005 ( g − r ) P 1 ( z SDSS − z P 1 ) 0.013 − 0.039 − 0.012 0.010 0.013 − 0.050 0.010 ( g − r ) P 1 ( z SDSS − y P 1 ) − 0.031 0.111 0.004 0.024 − 0.031 0.115 0.024 ( g − r ) P 1 ( r SDSS − w P 1 ) − 0.024 − 0.149 0.155 0.018 − 0.016 − 0.029 0.031 ( g − r ) P 1 ( B − g P 1 ) 0.212 0.556 0.034 0.032 0.213 0.587 0.034 ( g − r ) P 1 ( V − r P 1 ) 0.005 0.462 0.013 0.012 0.006 0.474 0.012 ( g − r ) P 1 ( R C − r P 1 ) − 0.137 − 0.108 − 0.029 0.015 − 0.138 − 0.131 0.015 ( g − r ) P 1 ( I C − i P 1 ) − 0.366 − 0.136 − 0.018 0.017 − 0.367 − 0.149 0.016 ( g − r ) P 1 ( V − w P 1 ) − 0.021 0.299 0.187 0.025 − 0.011 0.439 0.035 ( g − r ) P 1 ( V − g P 1 ) 0.005 − 0.536 0.011 0.012 0.006 − 0.525 0.012 Note. The table provides the coefficients for Equation (6). Tonry et al. 2012, ApJ

  11. Atmospheric extinction C. Buton et al.: Mauna Kea atmospheric extinction properties Fig. 17. Mean SN  atmospheric extinction (solid line) and its physical components (dashed lines). For comparison we overplot the previous Mauna Kea extinction measures derived by Boulade (1987) (diamonds), Bèland et al. (1988) (triangles) and Krisciunas et al. (1987) (stars). Buton et al (2013, A&A, 549, A8)

  12. CFHT Cloudcams http://www.cfht.hawaii.edu/en/gallery/cloudcams

  13. http://www.cfht.hawaii.edu/Instruments/Elixir/skyprobe/tonight.html

  14. Calibration practices • 10-20% accuracy: use standard values for extinction • ~1-5% accuracy: ‣ observe standard stars close in airmass and time to your science target ‣ observe standards close in color to your target ‣ note that if you have SDSS, PS1, or 2MASS standards in your images, you can calibrate directly from your science data without taking separate calibration images • <1% accuracy: measure a variety of di ff erent color standards at a variety of airmasses throughout the night. Very large overhead so needs to be science- driven.

  15. Magnier et al. 2013, ApJ

  16. Scatter of bright stars in uber-calibrated data (griz filters) g i r z (magnitudes) Magnier et al. 2013, ApJ

  17. Aumann et al. 1984 Vega is not a blackbody… The first time I remember a newspaper article on a scientific discovery

  18. Vega is not a blackbody…

Recommend


More recommend