andrea donini i f t u a m madrid with thanks to enrique
play

Andrea Donini I.F.T.-U.A.M. Madrid with thanks to Enrique - PowerPoint PPT Presentation

The merits (and de-merits) of the Silver Channel at the Neutrino Factory Andrea Donini I.F.T.-U.A.M. Madrid with thanks to Enrique Fernndez-Martnez, Patrick Huber, Jacobo Lpez-Pavn, Davide Meloni, Pasquale Migliozzi, Stefano Riglin


  1. The merits (and de-merits) of the Silver Channel at the Neutrino Factory Andrea Donini I.F.T.-U.A.M. Madrid with thanks to Enrique Fernández-Martínez, Patrick Huber, Jacobo López-Pavón, Davide Meloni, Pasquale Migliozzi, Stefano Rigólin

  2. Outline  The Golden Channel: ν e →ν μ  The degeneracy problem  The Silver Channel: ν e →ν τ  Limitations of the Silver Channel  How to improve the Silver Channel  The ν μ →ν τ Channel  ν e →ν τ and ν μ →ν τ for other means:  unitarity of the PMNS matrix  sterile neutrinos  ... 2

  3. Oscillation Parameters  What we already know (at 2 σ ) 7 . 9 +0 . 7 − 0 . 7 × 10 − 5 eV 2  ∆ m 2 = 12  Solar sector  sin 2 θ 12 θ 12 = 33º–35º 0 . 314 +0 . 06 =  − 0 . 05 2 . 6 +0 . 4 − 0 . 4 × 10 − 3 eV 2  | ∆ m 2 23 | =  Atm. sector  sin 2 θ 23 θ 23 = 36º–52º 0 . 45 +0 . 16 =  − 0 . 09  What we still don’t know θ 13 < 10º  sin 2 θ 13 < 0.031  δ  Mass hierarchy s atm = sign(∆ m 2 23 )  θ 23 octant s oct = sign(tan 2 θ 23 ) G.L. Fogli hep-ph/0608060

  4. The Golden Channel  The ν e →ν μ oscillation probability in matter � � δ ∓ ∆ atm L µ sin 2 2 θ 13 + Y ± P ± eµ = X ± µ sin 2 θ 13 cos + Z µ 2 At the Neutrino Factory:  e +  µ + → µ + ¯ ¯ ν µ ν µ → →  µ − ν e ν µ → → Need for a magnetized detector 4

  5. The degeneracy problem � Black square = input “true” value � There is a curve of solutions � If we add antineutrinos the two curves intersect in 2 regions: The true solution and an intrinsic degeneracy J. Burguet-Castell et al. hep-ph/0103258

  6. The degeneracy problem  Two other unknown parameters: s atm , s oct � There are 4 different sets of curves for different choices of s atm , s oct � 2 Intersections each Eightfold degeneracy: Intrinsic sign octant mixed H. Minakata et al. hep-ph/0108085 G.L.Fogli et al. hep-ph/9604415 V. Barger et al. hep-ph/0112119

  7. The Silver Channel  The ν e →ν τ oscillation probability in matter � � δ ∓ ∆ atm L τ sin 2 2 θ 13 − Y ± P ± eτ = X ± τ sin 2 θ 13 cos + Z τ 2 At the Neutrino Factory:  e +  µ + → µ + ¯ ¯ ν µ ν µ → → τ − µ −  ν e ν τ → → → Need to identify the decay vertex and the muon charge 7

  8. Event curves for golden and silver muons !## "## $ !" ! #" $ % # # $ ! " ! #" $ " ! "## ! !## ! ! ! " # " ! ! !" A. Donini, D. Meloni and P. Migliozzi, hep-ph/0206034 8

  9. The Detector: an OPERA-like 5 Kton ECC 9

  10. The Detector: an OPERA-like 5 Kton ECC 10 8

  11. The Golden channel at the NuFact True sign octant mixed Golden channel at 3000km Input values θ 13 = 2º, 5º and 8º δ = 45º, -90º 90% CL contours with 2% systematic error 11

  12. The Golden and Silver channels at the NF True sign octant mixed Golden and Silver channel at 3000km Input values θ 13 = 2º, 5º and 8º δ = 45º, -90º 90% CL contours with 2% systematic error 12

  13. Limitations of the Silver Channel  The main limitation is STATISTICS. Mass hierarchy for ∆ CP � 3 Π � 2 � 3 Σ � Mass hierarchy for ∆ CP � 3 Π � 2 � 3 Σ � 10 � 1 10 � 1 10 � 1 10 � 1 3 Σ Golden only Golden � Silver � Golden � Platinum � sin 2 2 Θ 13 sensitivity limit sin 2 2 Θ 13 sensitivity limit All three channels True value of sin 2 2 Θ 13 True value of sin 2 2 Θ 13 10 � 2 10 � 2 10 � 2 10 � 2 10 � 3 10 � 3 10 � 3 10 � 3 Golden only Golden � Platinum � 10 � 4 10 � 4 Golden � Silver � L ECC � L MID L ECC � L MID GLoBES 2006 All three channels 10 � 4 10 � 4 GLoBES 2006 2000 2000 4000 4000 6000 6000 8000 8000 2000 2000 4000 4000 6000 6000 8000 8000 L MID � km � L MID � km � L MID � km � L MID � km � P. Huber, M. Lindner, M. Rolinec and W. Winter, hep-ph/0606019 13

  14. How to improve the Silver Channel?  Difficult:  increase the mass? Not realistic: e.g., not enough emulsions.... 14

  15. How to improve the Silver Channel?  Difficult:  Increase the mass?  Magnetize the detector to use more τ decay channels? 15

  16. How to improve the Silver Channel?  Difficult:  Increase the mass?  Magnetize the detector to use more τ decay channels? → B See the ISS Detector Working Group Report 16 15

  17. The ν μ →ν τ channel  Limited impact at the Neutrino Factory for the standard scenario 0.0029 0.0029 0.0027 0.0027 � � m 2 � 23 � � m 2 � 23 0.0025 0.0025 0.0023 0.0023 0.0021 0.0021 1 2 3 4 5 6 7 8 9 10 36 38 40 42 44 46 48 50 52 54 Θ 13 Θ 23 ν µ →ν τ ν µ →ν µ ν µ →ν τ + ν µ →ν µ 17

  18. The ν μ →ν τ channel  Crucial beyond the three-family oscillation scenario  to test unitarity of the PMNS matrix P µτ = sin 2 2 θ µτ sin 2 ∆ atm L + 2 Im ( � µτ ) sin 2 θ µτ sin ∆ atm L + 4 | � µτ | 2 2 2 Zero Atmospheric term CP-interference distance effect At a 50 GeV Neutrino Factory with L = 130 Km the atmospheric term is suppressed 18

  19. The ν μ →ν τ channel  Crucial beyond the three-family oscillation scenario  to test unitarity of the PMNS matrix 180 180 90 90 0 ∆ ΜΤ 0 ∆ e Τ � 90 � 90 � 180 � 180 10 � 4 10 � 3 10 � 2 10 � 1 10 � 4 10 � 3 10 � 2 10 � 1 � Η ΜΤ � � Η e Τ � E. Fernández-Martínez, M.B. Gavela, J. López-Pavón and O. Yasuda, hep-ph/0703098 19

  20. The ν μ →ν τ channel  Crucial beyond the three-family oscillation scenario  to test unitarity of the PMNS matrix  to look for sterile neutrinos solid lines = including matter effects 80 0.012 dashed lines = no matter effects 60 0.008 ! #" 40 P # " " ! $" %& 0.004 " ! $" %!& " 20 ! $" %"& " P # e ! $" %'( 0 0 0 20 40 60 80 0 20 40 60 80 ! !" ! !" A. Donini et al., in preparation 17 20

  21. Conclusions The Golden Channel at the Neutrino Factory is extremely  powerful to measure θ 13 and δ . However, it is strongly affected by degeneracies The Silver Channel can be used to solve part of the  degeneracies for θ 13 not too small: θ 13 ≥ 1°-2° The Silver Channel and the Platinum Channel gave similar  results in degeneracy-solving in this region of θ 13 . They are both statistically limited: is it possible to increase the signal? An ECC can be used also to look for ν μ →ν τ oscillation:  this channel is of limited interest for standard three-family  oscillation, since ν μ →ν μ disappearance at the MIND detector gives same results in any case however, it is extremely interesting to look for new physics  beyond three-family oscillation

  22. Cross sections � Different cross-sections can differ up to a factor of 2 below 0.5GeV (at 0.2GeV) � Comparison of LIPARI (black) and NUANCE (red) cross- section � We used the LIPARI cross- section that takes into account nuclear effects important below 0.2GeV � The cross-sections will be measured by the experiments

Recommend


More recommend