an upgrading algorithm with optimal power law
play

An Upgrading Algorithm with Optimal Power Law Or Ordentlich 1 Ido Tal - PowerPoint PPT Presentation

An Upgrading Algorithm with Optimal Power Law Or Ordentlich 1 Ido Tal 2 1 Hebrew University 2 Technion 1 / 14 Big picture first In this talk: An upgrading algorithm for channels with non-binary input Optimal power law Achieved by


  1. An Upgrading Algorithm with Optimal Power Law Or Ordentlich 1 Ido Tal 2 1 Hebrew University 2 Technion 1 / 14

  2. Big picture first In this talk: ◮ An upgrading algorithm for channels with non-binary input ◮ Optimal power law ◮ Achieved by reduction to the binary-input case ◮ Important for constructing polar codes 2 / 14

  3. Constructing vanilla polar codes ◮ Underlying channel: a binary-input symmetric and memoryless channel W : X → Y , where X = { 0 , 1 } ◮ Derive N = 2 n synthetic channels W ( n ) : X → Y N × X j − 1 , j where 1 ≤ j ≤ N . ◮ Constructing a vanilla polar code ≡ finding which synthetic channels W ( n ) are ‘almost noiseless’ j ◮ Problem: output alphabet Y N × X j − 1 is intractably large ◮ Solution: ◮ Replace W ( n ) with Q ( n ) having output alphabet size L j j ◮ Have Q ( n ) be (stochastically) degraded with respect to W ( n ) j j input intractably large output size = L W ( n ) Φ j Q ( n ) j ◮ Q ( n ) ⇒ W ( n ) almost noiseless = almost noiseless j j 3 / 14

  4. Constructing vanilla polar codes ◮ We write Q ≤ W if Q is degraded with respect to W ◮ Alternatively, we write W ≥ Q and say that W is upgraded with respect to Q ◮ Previous slide: Q ( n ) ≤ W ( n ) j j ◮ We can also approximate W ( n ) “from above” by an upgraded j channel R ( n ) having output alphabet size at most L . j ◮ Sandwich property: Q ( n ) ≤ W ( n ) ≤ R ( n ) j j j ◮ In vanilla setting, R ( n ) has secondary importance. . . j 4 / 14

  5. Constructing generalized polar codes ◮ Polar codes have been generalized beyond vanilla setting ◮ Asymmetric channels (with asymmetric input distribution) ◮ Wiretap channels ◮ Channels with memory (input distribution can have memory as well) ◮ In all these settings upgrading is as important as degrading for constructing the code ◮ For settings with memory, the “effective input alphabet” is non-binary 5 / 14

  6. Problem statement ◮ Given: joint distribution of channel and input P X , Y ( x , y ) ◮ x ∈ X , the input alphabet and y ∈ Y , the output alphabet ◮ P X , Y ( x , y ) = P X ( x ) · P Y | X ( y | x ) � �� � � �� � input distribution channel ◮ Find: P ∗ X , Z , Y ( x , z , y ) such that ◮ Marginalization: � z P ∗ X , Z , Y ( x , z , y ) = P X , Y ( x , y ) ◮ Upgrading: X − Z − Y is a Markov chain ◮ Tractable output alphabet size: z ∈ Z and |Z| ≤ L X Y X Z Y = ⇒ Φ W R W ◮ Figure of merit: H ( X | Y ) − H ( X | Z ) = I ( X ; Z ) − I ( X ; Y ) should be ‘small’ 6 / 14

  7. Power law ◮ Previous results: ◮ Recall: output alphabet size of upgraded channel |Z| ≤ L ◮ There exists a ‘hard to upgrade’ joint distribution P ( X , Y ): H ( X | Y ) − H ( X | Z ) = Ω( L − 2 / ( |X|− 1) ) ◮ For binary input, |X| = 2, and any P X , Y , there exists an upgrading algorithm such that H ( X | Y ) − H ( X | Z ) = O ( L − 2 ) = O ( L − 2 / ( |X|− 1) ) ◮ New result: ◮ Also for non-binary input, we can upgrade any P X , Y and achieve H ( X | Y ) − H ( X | Z ) = O ( L − 2 / ( |X|− 1) ) ◮ Main idea: use binary-input as a black-box (reduction) 7 / 14

  8. One-hot representation ◮ Denote q = |X| . Assume X = { 1 , 2 , . . . , q } ◮ For x ∈ X , define g ( x ) = ( x 1 , x 2 , . . . , x q − 1 ) , the one-hot representation: g (1) = (1 , 0 , 0 . . . 0 , 0) g (2) = (0 , 1 , 0 . . . 0 , 0) . . . g ( q − 1) = (0 , 0 , 0 . . . 0 , 1) g ( q ) = (0 , 0 , 0 . . . 0 , 0) ◮ Abuse notation and write x = g ( x ) = ( x 1 , x 2 , . . . , x q − 1 ) 8 / 14

  9. ⇒ α ( i ) = ⇒ β ( i ) = ⇒ γ ( i ) = ⇒ P ∗ P X , Y = X , Z , Y ◮ We are given P X , Y , where |X| = q ◮ Need to produce P ∗ X , Z , Y by reducing to binary-input upgrading ◮ Denote X ′ = { 0 , 1 } ◮ Let X = ( X 1 , X 2 , . . . , X q − 1 ) and Y be distributed according to P X , Y ◮ First step: define, for 1 ≤ i ≤ q − 1 the joint distribution α ( i ) X i , Y ( x ′ , y ) = P ( X i = x ′ , Y = y | X i − 1 = 0 i − 1 ) 1 1 ◮ The joint distribution α ( i ) X i , Y ( x ′ , y ) has binary input, x ′ ∈ X ′ ◮ We may apply our binary-input upgrading procedure 9 / 14

  10. ⇒ α ( i ) = ⇒ β ( i ) = ⇒ γ ( i ) = ⇒ P ∗ P X , Y = X , Z , Y ◮ Recall our binary-input joint distribution: for 1 ≤ i ≤ q − 1, α ( i ) X i , Y ( x ′ , y ) = P ( X i = x ′ , Y = y | X i − 1 = 0 i − 1 ) 1 1 ◮ Define � L 1 / ( q − 1) � Λ = . ◮ Second step: ◮ Apply our binary-input upgrading procedure to α ( i ) X i , Y ( x ′ , y ), resulting in β ( i ) X i , Z i , Y ( x ′ , z , y ) , where |Z i | ≤ Λ ◮ Difference in entropies is O (Λ − 2 ) 10 / 14

  11. ⇒ α ( i ) = ⇒ β ( i ) = ⇒ γ ( i ) = ⇒ P ∗ P X , Y = X , Z , Y ◮ Recall that we have produced β ( i ) X i , Z i , Y ( x ′ , z , y ), where x ′ ∈ X ′ is binary ◮ Third step: define the conditional distribution γ ( i ) ( x i | z i , x i − 1 ) X i | Z i , X i − 1 1 1  β ( i ) if x i − 1 = 0 i − 1 X i | Z i ( x i | z i ) ,  1 1  if x i − 1 � = 0 i − 1 = 1 and x i = 0 , 1 1   0 otherwise . ◮ That is, if x i − 1 is non-zero, force x i to zero, in accordance 1 with the one-hot representation is zero, use β ( i ) ◮ Otherwise, if x i − 1 1 X i | Z i 11 / 14

  12. ⇒ α ( i ) = ⇒ β ( i ) = ⇒ γ ( i ) = ⇒ P ∗ P X , Y = X , Z , Y ◮ Last step: define � q − 1 � � β ( i ) P ∗ X , Z , Y ( x , z , y ) = P Y ( y ) · Z i | Y ( z i | y ) i =1 � q − 1 � � γ ( i ) ( x i | z i , x i − 1 · ) X i | Z i , X i − 1 1 1 i =1 ◮ A valid upgrade, with optimal power law: H ( X | Y ) − H ( X | Z ) = O ( L − 2 / ( |X|− 1) ) 12 / 14

  13. A graphical description of P X , Y ˜ α (1) X 1 f 1 ( ˜ X 1 ) X 1 X 1 | Y . . . . . . ˜ X i α ( i ) f i ( ˜ ∼ Y X i 1 ) X i X i | Y . . . . . . ˜ X q − 1 α ( q − 1) f q − 1 ( ˜ X q − 1 X q − 1 ) X q − 1 | Y 1 x i 1 ) � ˜ where f i (˜ x i · 1 { ˜ x i − 1 =0 i − 1 } 1 1 13 / 14

  14. A graphical description of P X , Z , Y ˜ Z 1 β (1) β (1) X 1 f 1 ( ˜ X 1 ) X 1 Z 1 | Y X 1 | Z 1 . . . . . . . . . ˜ Z i X i β ( i ) β ( i ) f i ( ˜ ∼ Y X i 1 ) X i Z i | Y X i | Z i . . . . . . . . . ˜ X q − 1 Z q − 1 β ( q − 1) β ( q − 1) f q − 1 ( ˜ X q − 1 X q − 1 ) Z q − 1 | Y X q − 1 | Z q − 1 1 x i 1 ) � ˜ where f i (˜ x i · 1 { ˜ x i − 1 =0 i − 1 } 1 1 14 / 14

Recommend


More recommend