An application of numerical bifurcation analysis Greg Lewis University of Ontario Institute of Technology (UOIT) with Bill Langford (Guelph) and Wayne Nagata (UBC) BIRS, August 8, 2007 BIRS – p.1/48
Outline Introduction The differentially heated rotating annulus experiment Bifurcation analysis Numerical continuation Eigenvalue computation Examples differentially heated rotating annulus differentially heated rotating spherical shell Summary BIRS – p.2/48
A differentially heated rotating annulus Ω r a r b fluid R D T T a b z Ω y r x φ BIRS – p.3/48
A differentially heated rotating planet North Pole cold hot South Pole BIRS – p.4/48
A differentially heated rotating annulus Ω r a r b fluid R D T T a b z Ω y r x φ BIRS – p.5/48
Regime diagram upper symmetric log(Thermal Rossby number) steady waves knee vacillation lower symmetric irregular log(Taylor number) BIRS – p.6/48
Wave flow in the annulus BIRS – p.7/48
Vacillating flow in the annulus BIRS – p.8/48
Regime diagram upper symmetric log(Thermal Rossby number) steady waves knee vacillation lower symmetric irregular log(Taylor number) BIRS – p.9/48
Bifurcation analysis Nonlinear DE: dx dt = G ( x, α ) , x ∈ R n , α ∈ R 1 . Steady solution x 0 = x 0 ( α ) when: G ( x 0 , α ) = 0 . Look for bifurcations from steady solution linear stability of steady solution from eigenvalues, λ , of the linearization of dynamical equation about the steady solution: G x ( x = x 0 , α ) . Real ( λ j ) < 0 for all j → x 0 is linearly stable Real ( λ j ) > 0 for one j → x 0 is linearly unstable BIRS – p.10/48
Numerical computations Steady solutions use pseudo-arclength continuation Linear stability: eigenvalues Implicitly restarted Arnoldi method with Cayley transformations BIRS – p.11/48
Steady solution: continuation Look for steady solutions discretization reduces PDE to system of nonlinear algebraic equations need to solve G ( x, α ) = 0 , x ∈ R n , α ∈ R Use Newton’s method with continuation need to have a good guess assume we know x 0 at α 0 such that G ( x 0 , α 0 ) = 0 BIRS – p.12/48
Natural parameterization x G(x, )=0 α x 1 x 0 ^ x 1 α 0 α α 1 BIRS – p.13/48
Natural parameterization x α G(x, ) = 0 x 1 x 0 x 1 α 1 α 0 α BIRS – p.14/48
Pseudo-arclength continuation Consider the parameter α as an unknown predictor: new guess (ˆ α 1 ) given by x 1 , ˆ x 1 = x 0 + ∆ s α 1 = α 0 + ∆ s � t 0 � t ( x ) � t 0 � t ( α ) ˆ 0 , ˆ 0 t 0 = [ t ( x ) t ( α ) 0 ] is the tangent to the solution curve 0 the step size ∆ s measures arclength along tangent line for corrector, add an extra condition to get new system: G ( x, α ) = 0 f ( x, α ) = 0 BIRS – p.15/48
Pseudo-arclength continuation x α G(x, ) = 0 x 3 x 3 t 2 x 2 x 2 x 1 t 1 x 0 α 1 α 0 α BIRS – p.16/48
Eigenvalue approximation Eigenvalue problem Linearize about steady solution get generalized eigenvalue problems λ B Φ = A Φ discretization leads to matrix eigenvalue problems BIRS – p.17/48
Eigenvalue approximation For eigenvalues use ‘Implicitly restarted Arnoldi method’ iterative memory efficient finds extremal eigenvalues BIRS – p.18/48
Eigenvalue approximation Use generalized Cayley transform C ( A , B ) = ( A − σ 1 B ) − 1 ( A − σ 2 B ) λ are eigenvalues from λ B x = A x µ are eigenvalues from µx ′ = C x ′ Real ( λ ) > σ 1 + σ 2 → | µ | > 1 2 BIRS – p.19/48
Eigenvalue approximation Use generalized Cayley transform C ( A , B ) = ( A − σ 1 B ) − 1 ( A − σ 2 B ) Don’t need to form the matrix C explicitly only need the matrix-vector product w = C v w = C v = ( A − σ 1 B ) − 1 ( A − σ 2 B ) v multiple by ( A − σ 1 B ) get: ( A − σ 1 B ) w = ( A − σ 2 B ) v i.e. a system of linear equations BIRS – p.20/48
Centre manifold reduction Apply centre manifold reduction at bifurcation points gives a low-dimensional model of dynamics get existence and stability of bifurcating solutions gives results close to a bifurcation point (local dynamics) Write ODE (reduced equation) in normal form compute the coefficients of the normal form equations Deduce dynamics of PDE from low-dimensional ODE BIRS – p.21/48
A differentially heated rotating annulus Ω r a r b fluid R D T T a b z Ω y r x φ BIRS – p.22/48
Model of fluid in the annulus Navier-Stokes equations in the Boussinesq approximation Cylindrical coordinates and rotating frame of reference No-slip boundary conditions Insulating top and bottom of annulus Differential heating: ∆ T = T b − T a inner cylinder cooled; outer cylinder heated Quantitatively accurate results BIRS – p.23/48
Analysis Look for steady flows invariant under rotation primary transitions reduces to problem in two-spatial dimensions Bifurcations from steady solutions BIRS – p.24/48
Regime diagram upper symmetric log(Thermal Rossby number) steady waves knee vacillation lower symmetric irregular log(Taylor number) BIRS – p.25/48
Transition curve (3,4) (4,5) 0 10 (5,6) (6,7) thermal Rossby number −1 (7,8) 10 (8,7) (7,6) −2 10 (6,5) theoretical transition curve −3 theoretical critical wave number transitions 10 experimental transition curve experimental critical wave number transitions 5 6 7 8 10 10 10 10 Taylor number BIRS – p.26/48
Regions of bi-stability (3,4) (4,5) 0 10 (5,6) (6,7) thermal Rossby number −1 (7,8) 10 (8,7) (7,6) −2 10 (6,5) −3 theoretical transition curve 10 theoretical critical wave number transitions boundaries of region of bistability 5 6 7 8 10 10 10 10 Taylor number BIRS – p.27/48
Spherical Shell Ω ∆ T g BIRS – p.28/48
Model of fluid in a spherical shell Navier-Stokes equations in the Boussinesq approximation Spherical polar coordinates and rotating frame of reference No-slip boundary conditions at inner sphere Stress-free boundary condition at outer sphere Insulating outer sphere Differential heating imposed on inner sphere: at r = r 0 , T = T 0 − ∆ T cos(2 θ ) . BIRS – p.29/48
Differential heating 4.5 4 3.5 T = T 0 3 T T = T 0 − ∆ T cos(2 θ ) 2.5 2 pole equator 1.5 0 0.5 1 1.5 θ BIRS – p.30/48
Spherical shell Ω R r 0 ∆ T BIRS – p.31/48
Analysis Look for steady flows invariant under rotation and reflection about equator Reduces to problem in two-spatial dimensions Introduces additional boundary conditions at pole and equator Bifurcations of steady solutions BIRS – p.32/48
✕ ✕ ✎ ✎ ✓ ✔ ✗ ✎ ✕ ✖ Steady Solution: , ✏✒✑ stream function azimuthal fluid velocity temperature deviation 2 2 2 + − 1.5 1.5 1.5 1 1 1 y y y 0.5 0.5 0.5 + − 0 1 2 0 1 2 0 1 2 x x x Bristol 05 – p.10/24
✕ ✖ ✎ ✎ ✓ ✔ ✔✘ ✎ ✕ Steady Solution: , ✏✒✑ stream function azimuthal fluid velocity temperature deviation 2 2 2 + − 1.5 1.5 1.5 1 1 1 y y y + 0.5 0.5 0.5 − 0 1 2 0 1 2 0 1 2 x x x Bristol 05 – p.11/24
✕ ✗ ✚ ✎ ✓ ✔ ✙ ✎ ✎ ✖ ✕ Steady Solution: , ✏✒✑ stream function azimuthal fluid velocity temperature deviation 2 2 2 + − 1.5 1.5 1.5 1 1 1 y y y 0.5 0.5 0.5 − + 0 1 2 0 1 2 0 1 2 x x x Bristol 05 – p.12/24
✕ ✕ ✎ ✎ ✓ ✔ ✎ ✕ ✖ Steady Solution: , ✏✒✑ stream function azimuthal fluid velocity temperature deviation + − 2 2 2 1.5 1.5 1.5 1 1 1 y y y 0.5 0.5 0.5 + − 0 1 2 0 1 2 0 1 2 x x x Bristol 05 – p.13/24
✎ ✓ ✎ ✕ ✖ ✕ ✔✛ ✎ Steady Solution: , ✏✒✑ stream function azimuthal fluid velocity temperature deviation 2 2 2 + − 1.5 1.5 1.5 1 1 1 y y y 0.5 0.5 0.5 + − 0 1 2 0 1 2 0 1 2 x x x Bristol 05 – p.14/24
✏ ✑ ✎ ✓ ✎ Bifurcation Diagram: Eigenvalue with largest real part −5 x 10 −9.6 max real( λ ) −9.7 0.01 0.0125 0.015 0.0175 0.02 ∆ T Continuation of steady solution −3 x 10 6 2−cell 5 || ξ || 2 4 1−cell 3 0.01 0.0125 0.015 0.0175 0.02 ∆ T Bristol 05 – p.15/24
✕ ✕ ✓ ✎ ✚ ✖ ✜ ✕ ✎ ✎ ✖ Steady Solution: , ✏✒✑ stream function azimuthal fluid velocity temperature deviation − + 2 2 2 1.5 1.5 1.5 1 1 1 y y y 0.5 0.5 0.5 + − 0 1 2 0 1 2 0 1 2 x x x Bristol 05 – p.16/24
✎ ✕ ✛ ✎ ✚ ✖ ✜ ✓ ✎ ✕ ✖ Steady Solution: , ✏✒✑ stream function azimuthal fluid velocity temperature deviation 2 2 2 + − 1.5 1.5 1.5 1 1 1 y y y 0.5 0.5 0.5 + − 0 1 2 0 1 2 0 1 2 x x x Bristol 05 – p.17/24
✺ ✻ ✘ ✺ ❄ ✿ ❅ Bifurcation Diagram: Eigenvalue with largest real part −8 x 10 0 max real( λ ) −5 −10 0.0107 0.0108 0.0109 ∆ T Continuation of steady solution −3 x 10 2−cell 1.5 || ξ || 2 1−cell 1 0.0107 0.0108 0.0109 ∆ T DEDS: Pattern Formation – p.27/35
Recommend
More recommend