allspammedup com pascal network org allspammedup com
play

allspammedup.com pascal-network.org allspammedup.com - PowerPoint PPT Presentation

Support Vector A lgorithms for Optimizing the Partial A rea Under the ROC Curve Harikrishna Narasimhan Department of Computer Science and Automation Indian Institute of Science, Bangalore Joint work with Shivani Agarwal, IISc; Mitra Biotech team


  1. Support Vector A lgorithms for Optimizing the Partial A rea Under the ROC Curve Harikrishna Narasimhan Department of Computer Science and Automation Indian Institute of Science, Bangalore Joint work with Shivani Agarwal, IISc; Mitra Biotech team

  2. allspammedup.com

  3. pascal-network.org allspammedup.com

  4. pascal-network.org allspammedup.com fusionsedge.com

  5. pascal-network.org allspammedup.com fusionsedge.com optimum7.com

  6. Spa pam or or Model No Non-sp spam am?

  7. Receive eiver r Ope pera rating g Charac acte teristic ic Curve ve 1 ive Rate ue Positive True 0 1 Fal alse e Positive ive Rate

  8. Receive eiver r Ope pera rating g Charac acte teristic ic Curve ve 1 ive Rate ue Positive Area a Und nder the ROC True Curve ve (AUC) 0 1 Fal alse e Positive ive Rate

  9. Partial A UC? Ful ull l A UC UC

  10. Partial A UC? Vs Ful ull l A UC UC Parti tial al A UC UC

  11. Ranking

  12. Ranking

  13. Biometric Screening

  14. Biometric Screening

  15. Medical Diagnosis http://en.wikipedia.org/

  16. Medical Diagnosis KDD Cup 2008 http://en.wikipedia.org/

  17. Bioinformatics ― Drug Discovery ― Gene Prioritization ― Protein Interaction Prediction ― …… http://en.wikipedia.org/wiki http://commons.wikimedia.org/ http://www.google.com/imghp

  18. Bioinformatics ― Drug Discovery ― Gene Prioritization ― Protein Interaction Prediction ― …… http://en.wikipedia.org/wiki http://commons.wikimedia.org/ http://www.google.com/imghp

  19. Partial A UC Optimization New support vector method for directly optimizing the partial AUC measure Narasimhan, H. and Agarwal, S. “ A structural SVM based approach for optimizing partial AUC ”, ICML 2013.

  20. Partial A UC Optimization New support vector method for directly optimizing the partial AUC measure Based on an earlier structural SVM based approach for full AUC optimization (Joachims 2005; 2006) Narasimhan, H. and Agarwal, S. “ A structural SVM based approach for optimizing partial AUC ”, ICML 2013.

  21. ROC Curve & A lgorithm Partial A UC e Rate ive True Positiv False e Positive ive Rate A pplication

  22. Setting …….. x 1 + x 2 + x 3 + x m + Positive Instances Training …….. Set x 1 - x 2 - x 3 - x n - Negative Instances

  23. Setting …….. x 1 + x 2 + x 3 + x m + Positive Instances Training …….. Set x 1 - x 2 - x 3 - x n - Negative Instances GOAL? Model

  24. Model Spa pam or or Scor ore e thres resho hold ld & No Non-sp spam am? Mod odel

  25. Model Spa pam or or Scor ore e thres resho hold ld & No Non-sp spam am? Mod odel 1 TPR 0 1 FPR

  26. Receiver Operating Characteristic Curve Illustration 20 15 14 True Positives Assigned by 13 score model 11 9 8 6 5 3 False Positives 2 0

  27. Receiver Operating Characteristic Curve Illustration 20 15 14 True Positives 13 11 9 8 6 5 3 False Positives 2 0

  28. Receiver Operating Characteristic Curve Illustration 20 15 14 True Positives 13 11 9 8 6 5 3 False Positives 2 0

  29. Receiver Operating Characteristic Curve Illustration 20 15 14 True Positives 13 11 9 8 6 5 3 False Positives 2 0

  30. Receiver Operating Characteristic Curve Illustration 20 15 14 Area Under the True Positives ROC Curve 13 (AUC) 11 9 Joachims (2005) 8 6 5 3 False Positives 2 0

  31. Receiver Operating Characteristic Curve Illustration 20 15 14 Area Under the True Positives ROC Curve 13 (AUC) 11 9 Joachims (2005) 8 6 5 3 False Positives 2 0 Partial AUC

  32. Observation 1: Best ROC Curve + + + True Positives + + + – – – – False Positives – –

  33. Observation 2: Worst ROC Curve – – – True Positives – – – + + + + False Positives + +

  34. Observation 3: Top Fraction of Negatives 20 15 14 True Positives 13 11 9 8 6 5 3 False Positives 2 0

  35. Observation 3: Top Fraction of Negatives 20 15 14 Score Model True Positives 13 11 ? 9 8 6 5 3 False Positives 2 0

  36. ROC Curve & A lgorithm Partial A UC e Rate ive True Positiv False e Positive ive Rate A pplication

  37. Classification SVM

  38. SVM for Full A UC Higher score to A than B A B

  39. SVM for Full A UC Score Model

  40. SVM for Full A UC Score Model

  41. SVM for Partial A UC Score Model True Positives False Positives

  42. SVM for Partial A UC Score Model

  43. SVM for Partial A UC Score Model

  44. SVM for Partial A UC GOAL? Score Model Structural SVM

  45. SVM for Partial A UC

  46. SVM for Partial A UC Ordering of examples in training set n 0 0 0 0 0 1 1 0 0 0 m 1 1 0 0 1 1 1 0 0 1

  47. SVM for Partial A UC Ordering of examples in training set n 0 0 0 0 0 0 0 0 0 0 compared 1 1 0 0 0 0 0 0 0 0 IDEAL m with 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0

  48. SVM for Partial A UC Ordering of examples in training set n 0 0 0 0 0 0 0 0 0 0 compared 1 1 0 0 0 0 0 0 0 0 IDEAL m with 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0

  49. SVM for Partial A UC Ordering of examples in training set n 0 0 0 0 0 0 0 0 0 0 compared 1 1 0 0 0 0 0 0 0 0 IDEAL m with 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 Upper Bound on (1 – pAUC) pAUC Loss

  50. Cutting-plane Solver Repeat: 1. Solve OP for a subset of constraints. 2. Add the most violated constraint.

  51. Cutting-plane Solver Repeat: 1. Solve OP for a subset of constraints. 2. Add the most violated constraint.

  52. Cutting-plane Solver Repeat: 1. Solve OP for a subset of constraints. 2. Add the most violated constraint. Break down!

  53. Cutting-plane Solver Repeat: 1. Solve OP for a subset of constraints. 2. Add the most violated constraint. Break down! Full AUC 0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 1 1 0 0 1

  54. Cutting-plane Solver Repeat: 1. Solve OP for a subset of constraints. 2. Add the most violated constraint. Break down! Optimize rows Full AUC Partial AUC independently 0 1 0 1 0 0 1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1

  55. Can be implemented in O ( (m+n) log (m+n) ) time Cutting-plane Solver complexity Repeat: 1. Solve OP for a subset of constraints. 2. Add the most violated constraint. Break down! Optimize rows Full AUC Partial AUC independently 0 1 0 1 0 0 1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 H. Narasimhan and S. Agarwal. A Structural SVM Based Approach for Optimizing Partial AUC . ICML, 2013.

  56. Experimental Results • Baseline Methods: – Full AUC Optimization (Joachims, 2005) Vs

  57. Experimental Results • Baseline Methods: – Full AUC Optimization (Joachims, 2005) Vs – Asymmetric SVM (Wu et al., 2008) – Boosting Style Method (Komori & Eguchi, 2010) – Greedy Heuristic Method (Ricamato & Tortorella, 2011)

  58. Experimental Results Drug Discovery 50 active compounds / 2092 inactive compounds Partial AUC in [0, 0.1] SVMpAUC 65.25 SVM-AUC 62.64 Interval [0, 0.1] ASVM 63.80 pAUCBoost 43.89 Greedy Heuristic 8.33

  59. Experimental Results Protein-Protein Interaction Prediction ~3x10 3 interacting pairs / ~2x10 5 non-interacting pairs Partial AUC in [0, 0.1] SVMpAUC 51.79 SVM-AUC 39.72 Interval [0, 0.1] ASVM 44.51 pAUCBoost 48.65 Greedy Heuristic 47.33

  60. Experimental Results KDD Cup 2008 Breast Cancer Detection ~600 malignant ROIs / ~10 5 benign ROIs Partial AUC in [0.2s, 0.3s] SVMpAUC 51.44 Interval [ α , β ] SVM-AUC 50.50 pAUCBoost 48.06 Greedy Heuristic 46.99

  61. Experimental Results Run un Time A na naly lysi sis Cutting-plane Method Repeat: 1. Solve OP for a subset of constraints. 2. Add the most violated constraint.

  62. Experimental Results Run un Time A na naly lysi sis Cutting-plane Method Repeat: 1. Solve OP for a subset of constraints. 2. Add the most violated constraint. Time taken per iteration Total number of iterations

  63. Experimental Results Run un Time A na naly lysi sis Total number of iterations

  64. Experimental Results Run un Time A na naly lysi sis Time taken per iteration

  65. Improved Formulation Narasimhan, H. and Agarwal, S. “ SVM_pAUC^tight: A new support vector method for optimizing partial AUC based on a tight convex upper bound” , KDD 2013.

  66. Improved Formulation • Better Formulation: Tighter Approximation Narasimhan, H. and Agarwal, S. “ SVM_pAUC^tight: A new support vector method for optimizing partial AUC based on a tight convex upper bound” , KDD 2013.

  67. Improved Formulation • Better Formulation: Tighter Approximation – Improved Accuracy – Better Run-time Guarantee Narasimhan, H. and Agarwal, S. “ SVM_pAUC^tight: A new support vector method for optimizing partial AUC based on a tight convex upper bound” , KDD 2013.

  68. ROC Curve & A lgorithm Partial A UC e Rate ive True Positiv False e Positive ive Rate A pplication

Recommend


More recommend