alexandru cojocaru elham kashefi l o colisson petros
play

Alexandru Cojocaru Elham Kashefi Lo Colisson Petros Wallden - PowerPoint PPT Presentation

Alexandru Cojocaru Elham Kashefi Lo Colisson Petros Wallden Overview Part 1: Classical Delegation of Quantum Computations UBQC Protocol Part 2: Honest-But-Curious QFactory Functionality Protocol description


  1. Malicious 4-states QFactory Required Assumptions 2 preimages for any This function is hard element in 𝐽𝑛 𝑔 to invert. 𝑙 Without the trapdoor 𝑒 𝑙 , except if you have the hard to find 𝑦 β‰  𝑦’ trapdoor 𝑒 𝑙 associated such that 𝑔 𝑙 (𝑦) = 𝑔 𝑙 (𝑦′) to the index function 𝑙 Has the same domain as 𝑕 𝑙 β„Ž π‘š 𝑦 1 βŠ• β„Ž π‘š (𝑦 2 ) = β„Ž π‘š (𝑦 2 βˆ’ 𝑦 1 ) and outputs a single bit. 𝑕 𝑙 : 𝐸 β†’ 𝑆 injective, homomorphic, quantum-safe, trapdoor one-way; β„Ž π‘š 𝑔 𝑙 ∢ 𝐸 Γ— 0, 1 β†’ 𝑆 When 𝑦 is sampled 𝑙 𝑦, 𝑑 = α‰Š 𝑕 𝑙 𝑦 , 𝑗𝑔 𝑑 = 0 uniformly at random, 𝑔 𝑕 𝑙 𝑦 ⋆ 𝑕 𝑙 𝑦 0 = 𝑕 𝑙 𝑦 + 𝑦 0 , 𝑗𝑔 𝑑 = 1 it is hard to distinguish β„Ž π‘š 𝑦 from a random bit. where 𝑦 0 is chosen by the Client at random from the domain of 𝑕 𝑙

  2. Malicious 4-states QFactory Protocol π·β„Žπ‘π‘π‘‘π‘“ (𝑙, 𝑒 𝑙 ) π·β„Žπ‘π‘π‘‘π‘“ π‘š

  3. Malicious 4-states QFactory Protocol π·β„Žπ‘π‘π‘‘π‘“ (𝑙, 𝑒 𝑙 ) 𝑙, π‘š π·β„Žπ‘π‘π‘‘π‘“ π‘š

  4. Malicious 4-states QFactory Protocol π·β„Žπ‘π‘π‘‘π‘“ (𝑙, 𝑒 𝑙 ) 𝑉 β„Ž π‘š 𝑙, π‘š π·β„Žπ‘π‘π‘‘π‘“ π‘š π·π‘π‘›π‘žπ‘£π‘’π‘“ π‘’β„Žπ‘“ 𝑑𝑗𝑠𝑑𝑣𝑗𝑒 𝑉 𝑔 𝑙

  5. Malicious 4-states QFactory Protocol 0 π‘œ ⟩ 0 𝑛 ⟩ π·β„Žπ‘π‘π‘‘π‘“ (𝑙, 𝑒 𝑙 ) 𝑉 β„Ž π‘š 𝑙, π‘š π·β„Žπ‘π‘π‘‘π‘“ π‘š π·π‘π‘›π‘žπ‘£π‘’π‘“ π‘’β„Žπ‘“ 𝑑𝑗𝑠𝑑𝑣𝑗𝑒 𝑉 𝑔 𝑙

  6. Malicious 4-states QFactory Protocol 0 π‘œ ⟩ 0 𝑛 ⟩ β†’ Οƒ π‘¦βˆˆπΈπ‘π‘› 𝑔 𝑙 𝑦 |0 𝑛 ⟩ π·β„Žπ‘π‘π‘‘π‘“ (𝑙, 𝑒 𝑙 ) 𝑉 β„Ž π‘š 𝑙, π‘š π·β„Žπ‘π‘π‘‘π‘“ π‘š π·π‘π‘›π‘žπ‘£π‘’π‘“ π‘’β„Žπ‘“ 𝑑𝑗𝑠𝑑𝑣𝑗𝑒 𝑉 𝑔 𝑙

  7. Malicious 4-states QFactory Protocol 0 π‘œ ⟩ 0 𝑛 ⟩ β†’ Οƒ π‘¦βˆˆπΈπ‘π‘› 𝑔 𝑙 𝑦 |0 𝑛 ⟩ β†’ Οƒ π‘¦βˆˆπΈπ‘π‘› 𝑔 𝑙 𝑦 |𝑔 𝑦 ⟩ π·β„Žπ‘π‘π‘‘π‘“ (𝑙, 𝑒 𝑙 ) 𝑉 β„Ž π‘š 𝑙, π‘š π·β„Žπ‘π‘π‘‘π‘“ π‘š π·π‘π‘›π‘žπ‘£π‘’π‘“ π‘’β„Žπ‘“ 𝑑𝑗𝑠𝑑𝑣𝑗𝑒 𝑉 𝑔 𝑙

  8. Malicious 4-states QFactory Protocol 0 π‘œ ⟩ 0 𝑛 ⟩ β†’ Οƒ π‘¦βˆˆπΈπ‘π‘› 𝑔 𝑙 𝑦 |0 𝑛 ⟩ β†’ Οƒ π‘¦βˆˆπΈπ‘π‘› 𝑔 𝑙 𝑦 𝑔 𝑦 = Οƒ π‘§βˆˆπ½π‘› 𝑔 𝑙 ( 𝑦 + |𝑦 β€² ⟩) βŠ— |π‘§βŸ© π·β„Žπ‘π‘π‘‘π‘“ (𝑙, 𝑒 𝑙 ) 𝑉 β„Ž π‘š 𝑙, π‘š π·β„Žπ‘π‘π‘‘π‘“ π‘š π·π‘π‘›π‘žπ‘£π‘’π‘“ π‘’β„Žπ‘“ 𝑑𝑗𝑠𝑑𝑣𝑗𝑒 𝑉 𝑔 𝑙

  9. Malicious 4-states QFactory Protocol 0 π‘œ ⟩ 0 𝑛 ⟩ β†’ 𝑦 |0 𝑛 ⟩ β†’ ( 𝑦 + |𝑦 β€² ⟩) βŠ— |π‘§βŸ© β†’ ( 𝑦 + |𝑦 β€² ⟩) βŠ— |π‘§βŸ© = (|π‘¨βŸ©|0⟩ + |π‘¨β€²βŸ©|1⟩) βŠ— |π‘§βŸ© ෍ ෍ 𝑦 𝑔 𝑦 = ෍ π‘¦βˆˆπΈπ‘π‘› 𝑔 𝑙 π‘¦βˆˆπΈπ‘π‘› 𝑔 𝑙 π‘§βˆˆπ½π‘› 𝑔 𝑙 𝑦 = (𝑨, 0) 𝑦’ = (𝑨′, 1) π·β„Žπ‘π‘π‘‘π‘“ (𝑙, 𝑒 𝑙 ) 𝑉 β„Ž π‘š 𝑙, π‘š π·β„Žπ‘π‘π‘‘π‘“ π‘š π·π‘π‘›π‘žπ‘£π‘’π‘“ π‘’β„Žπ‘“ 𝑑𝑗𝑠𝑑𝑣𝑗𝑒 𝑉 𝑔 𝑙

  10. Malicious 4-states QFactory Protocol 0 π‘œ ⟩ 0 𝑛 ⟩ β†’ 𝑦 |0 𝑛 ⟩ β†’ ( 𝑦 + |𝑦 β€² ⟩) βŠ— |π‘§βŸ© β†’ ( 𝑦 + |𝑦 β€² ⟩) βŠ— |π‘§βŸ© = (|π‘¨βŸ©|0⟩ + |π‘¨β€²βŸ©|1⟩) βŠ— |π‘§βŸ© β†’ (|π‘¨βŸ©|0⟩|0⟩ + |π‘¨β€²βŸ©|1⟩|0⟩) ෍ ෍ 𝑦 𝑔 𝑦 = ෍ π‘¦βˆˆπΈπ‘π‘› 𝑔 𝑙 π‘¦βˆˆπΈπ‘π‘› 𝑔 𝑙 π‘§βˆˆπ½π‘› 𝑔 𝑙 π·β„Žπ‘π‘π‘‘π‘“ (𝑙, 𝑒 𝑙 ) 𝑉 β„Ž π‘š 𝑙, π‘š π·β„Žπ‘π‘π‘‘π‘“ π‘š π·π‘π‘›π‘žπ‘£π‘’π‘“ π‘’β„Žπ‘“ 𝑑𝑗𝑠𝑑𝑣𝑗𝑒 𝑉 𝑔 𝑙

  11. Malicious 4-states QFactory Protocol ( 𝑦 + |𝑦 β€² ⟩) βŠ— |π‘§βŸ© β†’ ( 𝑦 + |𝑦 β€² ⟩) βŠ— |π‘§βŸ© = (|π‘¨βŸ©|0⟩ + |π‘¨β€²βŸ©|1⟩) βŠ— |π‘§βŸ© β†’ (|π‘¨βŸ©|0⟩|0⟩ + |π‘¨β€²βŸ©|1⟩|0⟩) β†’ |π‘¨βŸ©|0⟩|β„Ž(𝑨)⟩ + |π‘¨β€²βŸ©|1⟩|β„Ž(𝑨′)⟩ ෍ 𝑦 𝑔 𝑦 = ෍ π‘¦βˆˆπΈπ‘π‘› 𝑔 𝑙 π‘§βˆˆπ½π‘› 𝑔 𝑙 ΰ·ͺ 𝑉 β„Ž |π‘¨βŸ© |π‘‘βŸ© |β„Ž(𝑨) ⟩ 𝑨 𝑑 0 π·β„Žπ‘π‘π‘‘π‘“ (𝑙, 𝑒 𝑙 ) 𝑉 β„Ž π‘š 𝑙, π‘š π·β„Žπ‘π‘π‘‘π‘“ π‘š π·π‘π‘›π‘žπ‘£π‘’π‘“ π‘’β„Žπ‘“ 𝑑𝑗𝑠𝑑𝑣𝑗𝑒 𝑉 𝑔 𝑙

  12. Malicious 4-states QFactory Protocol ( 𝑦 + |𝑦 β€² ⟩) βŠ— |π‘§βŸ© β†’ ( 𝑦 + |𝑦 β€² ⟩) βŠ— |π‘§βŸ© = (|π‘¨βŸ©|0⟩ + |π‘¨β€²βŸ©|1⟩) βŠ— |π‘§βŸ© β†’ (|π‘¨βŸ©|0⟩|0⟩ + |π‘¨β€²βŸ©|1⟩|0⟩) β†’ |π‘¨βŸ©|0⟩|β„Ž(𝑨)⟩ + |π‘¨β€²βŸ©|1⟩|β„Ž(𝑨′)⟩ β‡’ |π‘·π’—π’–π’’π’—π’–βŸ© ෍ 𝑦 𝑔 𝑦 = ෍ π‘¦βˆˆπΈπ‘π‘› 𝑔 𝑙 π‘§βˆˆπ½π‘› 𝑔 𝑙 ΰ·ͺ 𝑉 β„Ž |π‘¨βŸ© |π‘‘βŸ© |β„Ž(𝑨) ⟩ 𝑨 𝑑 0 π·β„Žπ‘π‘π‘‘π‘“ 𝑙, 𝑒 𝑙 𝑉 β„Ž π‘š 𝑙, π‘š π·β„Žπ‘π‘π‘‘π‘“ π‘š π·π‘π‘›π‘žπ‘£π‘’π‘“ π‘’β„Žπ‘“ 𝑑𝑗𝑠𝑑𝑣𝑗𝑒 𝑉 𝑔 𝑙

  13. Malicious 4-states QFactory Protocol ( 𝑦 + |𝑦 β€² ⟩) βŠ— |π‘§βŸ© β†’ ( 𝑦 + |𝑦 β€² ⟩) βŠ— |π‘§βŸ© = (|π‘¨βŸ©|0⟩ + |π‘¨β€²βŸ©|1⟩) βŠ— |π‘§βŸ© β†’ (|π‘¨βŸ©|0⟩|0⟩ + |π‘¨β€²βŸ©|1⟩|0⟩) β†’ |π‘¨βŸ©|0⟩|β„Ž(𝑨)⟩ + |π‘¨β€²βŸ©|1⟩|β„Ž(𝑨′)⟩ β‡’ |π‘·π’—π’–π’’π’—π’–βŸ© ෍ 𝑦 𝑔 𝑦 = ෍ π‘¦βˆˆπΈπ‘π‘› 𝑔 𝑙 π‘§βˆˆπ½π‘› 𝑔 𝑙 ΰ·ͺ 𝑉 β„Ž |π‘¨βŸ© |π‘‘βŸ© |β„Ž(𝑨) ⟩ 𝑨 𝑑 0 π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|0⟩ , |1⟩ , |+⟩ , |βˆ’βŸ©} π·β„Žπ‘π‘π‘‘π‘“ 𝑙, 𝑒 𝑙 𝑉 β„Ž π‘š 𝑙, π‘š π·β„Žπ‘π‘π‘‘π‘“ π‘š π·π‘π‘›π‘žπ‘£π‘’π‘“ π‘’β„Žπ‘“ 𝑑𝑗𝑠𝑑𝑣𝑗𝑒 𝑉 𝑔 𝑙

  14. Malicious 4-states QFactory Protocol ( 𝑦 + |𝑦 β€² ⟩) βŠ— |π‘§βŸ© β†’ ( 𝑦 + |𝑦 β€² ⟩) βŠ— |π‘§βŸ© = (|π‘¨βŸ©|0⟩ + |π‘¨β€²βŸ©|1⟩) βŠ— |π‘§βŸ© β†’ (|π‘¨βŸ©|0⟩|0⟩ + |π‘¨β€²βŸ©|1⟩|0⟩) β†’ |π‘¨βŸ©|0⟩|β„Ž(𝑨)⟩ + |π‘¨β€²βŸ©|1⟩|β„Ž(𝑨′)⟩ β‡’ |π‘·π’—π’–π’’π’—π’–βŸ© ෍ 𝑦 𝑔 𝑦 = ෍ π‘¦βˆˆπΈπ‘π‘› 𝑔 𝑙 π‘§βˆˆπ½π‘› 𝑔 𝑙 ΰ·ͺ 𝑉 β„Ž |π‘¨βŸ© |π‘‘βŸ© |β„Ž(𝑨) ⟩ 𝑨 𝑑 0 π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|0⟩ , |1⟩ , |+⟩ , |βˆ’βŸ©} π·β„Žπ‘π‘π‘‘π‘“ 𝑙, 𝑒 𝑙 𝑉 β„Ž π‘š π‘ƒπ‘£π‘’π‘žπ‘£π‘’ = 𝐼 𝐢 1 π‘Œ 𝐢 2 |0⟩ 𝑙, π‘š π·β„Žπ‘π‘π‘‘π‘“ π‘š 𝐢 1 = β„Ž 𝑨 βŠ• β„Ž 𝑨’ π·π‘π‘›π‘žπ‘£π‘’π‘“ π‘’β„Žπ‘“ 𝑑𝑗𝑠𝑑𝑣𝑗𝑒 𝑉 𝑔 𝑙 𝐢 2 = Οƒ 𝑦 𝑗 βŠ• 𝑦 𝑗 β€² β‹… 𝑐 𝑗 𝑛𝑝𝑒 2 β‹… 𝐢 1 βŠ• [β„Ž 𝑨 β‹… 1 βŠ• 𝐢 1 ] 𝑦 = 𝑨, 0 𝑦 β€² = (𝑨 β€² , 1)

  15. Malicious 4-states QFactory Protocol ( 𝑦 + |𝑦 β€² ⟩) βŠ— |π‘§βŸ© β†’ ( 𝑦 + |𝑦 β€² ⟩) βŠ— |π‘§βŸ© = (|π‘¨βŸ©|0⟩ + |π‘¨β€²βŸ©|1⟩) βŠ— |π‘§βŸ© β†’ (|π‘¨βŸ©|0⟩|0⟩ + |π‘¨β€²βŸ©|1⟩|0⟩) β†’ |π‘¨βŸ©|0⟩|β„Ž(𝑨)⟩ + |π‘¨β€²βŸ©|1⟩|β„Ž(𝑨′)⟩ β‡’ |π‘·π’—π’–π’’π’—π’–βŸ© ෍ 𝑦 𝑔 𝑦 = ෍ π‘¦βˆˆπΈπ‘π‘› 𝑔 𝑙 π‘§βˆˆπ½π‘› 𝑔 𝑙 ΰ·ͺ 𝑉 β„Ž |π‘¨βŸ© |π‘‘βŸ© |β„Ž(𝑨) ⟩ 𝑨 𝑑 0 π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|0⟩ , |1⟩ , |+⟩ , |βˆ’βŸ©} π·β„Žπ‘π‘π‘‘π‘“ 𝑙, 𝑒 𝑙 𝑉 β„Ž π‘š π‘ƒπ‘£π‘’π‘žπ‘£π‘’ = 𝐼 𝐢 1 π‘Œ 𝐢 2 |0⟩ 𝑙, π‘š π·β„Žπ‘π‘π‘‘π‘“ π‘š 𝐢 1 = β„Ž 𝑨 βŠ• β„Ž 𝑨’ π·π‘π‘›π‘žπ‘£π‘’π‘“ π‘’β„Žπ‘“ 𝑑𝑗𝑠𝑑𝑣𝑗𝑒 𝑉 𝑔 𝑙 𝐢 2 = Οƒ 𝑦 𝑗 βŠ• 𝑦 𝑗 β€² β‹… 𝑐 𝑗 𝑛𝑝𝑒 2 β‹… 𝐢 1 βŠ• [β„Ž 𝑨 β‹… 1 βŠ• 𝐢 1 ] 𝑦 = 𝑨, 0 𝑦 β€² = (𝑨 β€² , 1) 𝑸𝒔𝒑𝒆𝒗𝒅𝒇𝒕 |π‘·π’—π’–π’’π’—π’–βŸ©

  16. Malicious 4-states QFactory Protocol ( 𝑦 + |𝑦 β€² ⟩) βŠ— |π‘§βŸ© β†’ ( 𝑦 + |𝑦 β€² ⟩) βŠ— |π‘§βŸ© = (|π‘¨βŸ©|0⟩ + |π‘¨β€²βŸ©|1⟩) βŠ— |π‘§βŸ© β†’ (|π‘¨βŸ©|0⟩|0⟩ + |π‘¨β€²βŸ©|1⟩|0⟩) β†’ |π‘¨βŸ©|0⟩|β„Ž(𝑨)⟩ + |π‘¨β€²βŸ©|1⟩|β„Ž(𝑨′)⟩ β‡’ |π‘·π’—π’–π’’π’—π’–βŸ© ෍ 𝑦 𝑔 𝑦 = ෍ π‘¦βˆˆπΈπ‘π‘› 𝑔 𝑙 π‘§βˆˆπ½π‘› 𝑔 𝑙 ΰ·ͺ 𝑉 β„Ž |π‘¨βŸ© |π‘‘βŸ© |β„Ž(𝑨) ⟩ 𝑨 𝑑 0 π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|0⟩ , |1⟩ , |+⟩ , |βˆ’βŸ©} π·β„Žπ‘π‘π‘‘π‘“ 𝑙, 𝑒 𝑙 𝑉 β„Ž π‘š π‘ƒπ‘£π‘’π‘žπ‘£π‘’ = 𝐼 𝐢 1 π‘Œ 𝐢 2 |0⟩ 𝑙, π‘š π·β„Žπ‘π‘π‘‘π‘“ π‘š 𝐢 1 = β„Ž 𝑨 βŠ• β„Ž 𝑨’ π·π‘π‘›π‘žπ‘£π‘’π‘“ π‘’β„Žπ‘“ 𝑑𝑗𝑠𝑑𝑣𝑗𝑒 𝑉 𝑔 𝑙 𝐢 2 = Οƒ 𝑦 𝑗 βŠ• 𝑦 𝑗 β€² β‹… 𝑐 𝑗 𝑛𝑝𝑒 2 β‹… 𝐢 1 βŠ• [β„Ž 𝑨 β‹… 1 βŠ• 𝐢 1 ] 𝑦 = 𝑨, 0 𝑦 β€² = (𝑨 β€² , 1) 𝑸𝒔𝒑𝒆𝒗𝒅𝒇𝒕 |π‘·π’—π’–π’’π’—π’–βŸ© 𝑧, 𝑐

  17. Malicious 4-states QFactory Protocol ( 𝑦 + |𝑦 β€² ⟩) βŠ— |π‘§βŸ© β†’ ( 𝑦 + |𝑦 β€² ⟩) βŠ— |π‘§βŸ© = (|π‘¨βŸ©|0⟩ + |π‘¨β€²βŸ©|1⟩) βŠ— |π‘§βŸ© β†’ (|π‘¨βŸ©|0⟩|0⟩ + |π‘¨β€²βŸ©|1⟩|0⟩) β†’ |π‘¨βŸ©|0⟩|β„Ž(𝑨)⟩ + |π‘¨β€²βŸ©|1⟩|β„Ž(𝑨′)⟩ β‡’ |π‘·π’—π’–π’’π’—π’–βŸ© ෍ 𝑦 𝑔 𝑦 = ෍ π‘¦βˆˆπΈπ‘π‘› 𝑔 𝑙 π‘§βˆˆπ½π‘› 𝑔 𝑙 ΰ·ͺ 𝑉 β„Ž |π‘¨βŸ© |π‘‘βŸ© |β„Ž(𝑨) ⟩ 𝑨 𝑑 0 π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|0⟩ , |1⟩ , |+⟩ , |βˆ’βŸ©} π·β„Žπ‘π‘π‘‘π‘“ 𝑙, 𝑒 𝑙 𝑉 β„Ž π‘š π‘ƒπ‘£π‘’π‘žπ‘£π‘’ = 𝐼 𝐢 1 π‘Œ 𝐢 2 |0⟩ 𝑙, π‘š π·β„Žπ‘π‘π‘‘π‘“ π‘š 𝐢 1 = β„Ž 𝑨 βŠ• β„Ž 𝑨’ π·π‘π‘›π‘žπ‘£π‘’π‘“ π‘’β„Žπ‘“ 𝑑𝑗𝑠𝑑𝑣𝑗𝑒 𝑉 𝑔 𝑙 𝐢 2 = Οƒ 𝑦 𝑗 βŠ• 𝑦 𝑗 β€² β‹… 𝑐 𝑗 𝑛𝑝𝑒 2 β‹… 𝐢 1 βŠ• [β„Ž 𝑨 β‹… 1 βŠ• 𝐢 1 ] 𝑦 = 𝑨, 0 𝑦 β€² = (𝑨 β€² , 1) 𝑸𝒔𝒑𝒆𝒗𝒅𝒇𝒕 |π‘·π’—π’–π’’π’—π’–βŸ© 𝑧, 𝑐 (𝑦, 𝑦’) = π½π‘œπ‘€(𝑒 𝑙 , 𝑧) π·π‘π‘›π‘žπ‘£π‘’π‘“ 𝐢 1 , 𝐢 2

  18. Malicious 4-states QFactory Protocol ( 𝑦 + |𝑦 β€² ⟩) βŠ— |π‘§βŸ© β†’ ( 𝑦 + |𝑦 β€² ⟩) βŠ— |π‘§βŸ© = (|π‘¨βŸ©|0⟩ + |π‘¨β€²βŸ©|1⟩) βŠ— |π‘§βŸ© β†’ (|π‘¨βŸ©|0⟩|0⟩ + |π‘¨β€²βŸ©|1⟩|0⟩) β†’ |π‘¨βŸ©|0⟩|β„Ž(𝑨)⟩ + |π‘¨β€²βŸ©|1⟩|β„Ž(𝑨′)⟩ β‡’ |π‘·π’—π’–π’’π’—π’–βŸ© ෍ 𝑦 𝑔 𝑦 = ෍ π‘¦βˆˆπΈπ‘π‘› 𝑔 𝑙 π‘§βˆˆπ½π‘› 𝑔 𝑙 ΰ·ͺ 𝑉 β„Ž |π‘¨βŸ© |π‘‘βŸ© |β„Ž(𝑨) ⟩ 𝑨 𝑑 0 π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|0⟩ , |1⟩ , |+⟩ , |βˆ’βŸ©} π·β„Žπ‘π‘π‘‘π‘“ 𝑙, 𝑒 𝑙 𝑉 β„Ž π‘š π‘ƒπ‘£π‘’π‘žπ‘£π‘’ = 𝐼 𝐢 1 π‘Œ 𝐢 2 |0⟩ 𝑙, π‘š π·β„Žπ‘π‘π‘‘π‘“ π‘š 𝐢 1 = β„Ž 𝑨 βŠ• β„Ž 𝑨’ π·π‘π‘›π‘žπ‘£π‘’π‘“ π‘’β„Žπ‘“ 𝑑𝑗𝑠𝑑𝑣𝑗𝑒 𝑉 𝑔 𝑙 𝐢 2 = Οƒ 𝑦 𝑗 βŠ• 𝑦 𝑗 β€² β‹… 𝑐 𝑗 𝑛𝑝𝑒 2 β‹… 𝐢 1 βŠ• [β„Ž 𝑨 β‹… 1 βŠ• 𝐢 1 ] 𝑦 = 𝑨, 0 𝑦 β€² = (𝑨 β€² , 1) 𝑸𝒔𝒑𝒆𝒗𝒅𝒇𝒕 |π‘·π’—π’–π’’π’—π’–βŸ© 𝑧, 𝑐 (𝑦, 𝑦’) = π½π‘œπ‘€(𝑒 𝑙 , 𝑧) π·π‘π‘›π‘žπ‘£π‘’π‘“ 𝐢 1 , 𝐢 2 𝑯𝒇𝒖𝒕 𝑷𝒗𝒖𝒒𝒗𝒖

  19. Security (in the quantum malicious setting) β–ͺ π‘ƒπ‘£π‘’π‘žπ‘£π‘’ = 𝐼 𝐢 1 π‘Œ 𝐢 2 |0⟩ β–ͺ 𝐢 1 = the basis bit of π‘ƒπ‘£π‘’π‘žπ‘£π‘’ β–ͺ If 𝐢 1 = 0 then π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|0⟩, |1⟩} and if 𝐢 1 = 1 then π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|+⟩, |βˆ’βŸ©} Server cannot do better than a random guess: β€’ Blindness of the basis 𝐢 1 of |π‘ƒπ‘£π‘’π‘žπ‘£π‘’βŸ© β€’ 𝐢 1 is a hard-core predicate (wrt the function g); against malicious adversaries. Theorem : No matter what Bob does, β€’ he cannot determine 𝐢 1 .

  20. Security (in the quantum malicious setting) ➒ 𝐢 1 is a hard-core predicate ⟹ basis -bli lindness ss ➒ The basis-blindness is the β€œmaximum” security: ➒ Even after an honest run we can at most guarantee basis blindness, but not full blindness about the output state: ➒ π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|0⟩ , |1⟩ , |+⟩ , |βˆ’βŸ©} 3 ➒ Then the Adversary can determine 𝐢 2 with probability at least 4 : ➒ Makes a random guess ΰ·ͺ 𝐢 1 and then measures π‘ƒπ‘£π‘’π‘žπ‘£π‘’ in the ΰ·ͺ 𝐢 1 basis, obtaining measurement outcome ΰ·ͺ 𝐢 2 : if ΰ·ͺ 𝐢 1 = 𝐢 1 then ΰ·ͺ 𝐢 2 = 𝐢 2 with probability 1 , otherwise 1 𝐢 2 = 𝐢 2 with probability ΰ·ͺ 2 ; ➒ Basis-blindness is proven to be sufficient for many secure computation protocols, e.g. blind quantum computation (UBQC protocol); ➒ Basis-blindness is required for classical verification of QFactory; ⟹ classical verification of quantum computations

  21. Security (in the quantum malicious setting) Recall: π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|0⟩ , |1⟩ , |+⟩ , |βˆ’βŸ©} π‘ƒπ‘£π‘’π‘žπ‘£π‘’ = 𝐼 𝐢 1 π‘Œ 𝐢 2 |0⟩ 𝐢 1 = β„Ž 𝑨 βŠ• β„Ž 𝑨’ 𝐢 2 = Οƒ 𝑦 𝑗 βŠ• 𝑦 𝑗 β€² β‹… 𝑐 𝑗 𝑛𝑝𝑒 2 β‹… 𝐢 1 βŠ• [β„Ž 𝑨 β‹… 1 βŠ• 𝐢 1 ]

  22. Security (in the quantum malicious setting) Recall: π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|0⟩ , |1⟩ , |+⟩ , |βˆ’βŸ©} 𝐢 1 = the basis bit of π‘ƒπ‘£π‘’π‘žπ‘£π‘’ π‘ƒπ‘£π‘’π‘žπ‘£π‘’ = 𝐼 𝐢 1 π‘Œ 𝐢 2 |0⟩ β–ͺ π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|0⟩, |1⟩} ⇔ 𝐢 1 = 0 β–ͺ π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|+⟩, |βˆ’βŸ©} ⇔ 𝐢 1 = 1 𝐢 1 = β„Ž 𝑨 βŠ• β„Ž 𝑨’ β‡’ πΌπ‘—π‘’π‘—π‘œπ‘• the basis equivalent to hiding 𝐢 2 = Οƒ 𝑦 𝑗 βŠ• 𝑦 𝑗 β€² β‹… 𝑐 𝑗 𝑛𝑝𝑒 2 β‹… 𝐢 1 βŠ• 𝐢 1 = β„Ž 𝑨 βŠ• β„Ž 𝑨’ [β„Ž 𝑨 β‹… 1 βŠ• 𝐢 1 ]

  23. Security (in the quantum malicious setting) Recall: π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|0⟩ , |1⟩ , |+⟩ , |βˆ’βŸ©} 𝐢 1 = the basis bit of π‘ƒπ‘£π‘’π‘žπ‘£π‘’ π‘ƒπ‘£π‘’π‘žπ‘£π‘’ = 𝐼 𝐢 1 π‘Œ 𝐢 2 |0⟩ β–ͺ π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|0⟩, |1⟩} ⇔ 𝐢 1 = 0 β–ͺ π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|+⟩, |βˆ’βŸ©} ⇔ 𝐢 1 = 1 𝐢 1 = β„Ž 𝑨 βŠ• β„Ž 𝑨’ β‡’ πΌπ‘—π‘’π‘—π‘œπ‘• the basis equivalent to hiding 𝐢 2 = Οƒ 𝑦 𝑗 βŠ• 𝑦 𝑗 β€² β‹… 𝑐 𝑗 𝑛𝑝𝑒 2 β‹… 𝐢 1 βŠ• 𝐢 1 = β„Ž 𝑨 βŠ• β„Ž 𝑨’ [β„Ž 𝑨 β‹… 1 βŠ• 𝐢 1 ] Using the definition of 𝑔 : β€’ β„Žπ‘π‘›π‘π‘›π‘π‘ π‘žβ„Žπ‘—π‘‘ 𝑕 𝑨 + 𝑑 β‹… 𝑨 0 𝑔 𝑨, 𝑑 = 𝑕 𝑨 + 𝑑 β‹… 𝑕 𝑨 0 =

  24. Security (in the quantum malicious setting) Recall: π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|0⟩ , |1⟩ , |+⟩ , |βˆ’βŸ©} 𝐢 1 = the basis bit of π‘ƒπ‘£π‘’π‘žπ‘£π‘’ π‘ƒπ‘£π‘’π‘žπ‘£π‘’ = 𝐼 𝐢 1 π‘Œ 𝐢 2 |0⟩ β–ͺ π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|0⟩, |1⟩} ⇔ 𝐢 1 = 0 β–ͺ π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|+⟩, |βˆ’βŸ©} ⇔ 𝐢 1 = 1 𝐢 1 = β„Ž 𝑨 βŠ• β„Ž 𝑨’ β‡’ πΌπ‘—π‘’π‘—π‘œπ‘• the basis equivalent to hiding 𝐢 2 = Οƒ 𝑦 𝑗 βŠ• 𝑦 𝑗 β€² β‹… 𝑐 𝑗 𝑛𝑝𝑒 2 β‹… 𝐢 1 βŠ• 𝐢 1 = β„Ž 𝑨 βŠ• β„Ž 𝑨’ [β„Ž 𝑨 β‹… 1 βŠ• 𝐢 1 ] Using the definition of 𝑔 : β€’ β„Žπ‘π‘›π‘π‘›π‘π‘ π‘žβ„Žπ‘—π‘‘ 𝑕 𝑨 + 𝑑 β‹… 𝑨 0 𝑔 𝑨, 𝑑 = 𝑕 𝑨 + 𝑑 β‹… 𝑕 𝑨 0 = β€’ 𝑕 is injective , the 2 preimages of 𝑔 are: 𝑦 = 𝑨, 0 π‘π‘œπ‘’ 𝑦’ = 𝑨 + 𝑨 0 , 1 β‡’ 𝑨’ = 𝑨 + 𝑨 0

  25. Security (in the quantum malicious setting) Recall: π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|0⟩ , |1⟩ , |+⟩ , |βˆ’βŸ©} 𝐢 1 = the basis bit of π‘ƒπ‘£π‘’π‘žπ‘£π‘’ π‘ƒπ‘£π‘’π‘žπ‘£π‘’ = 𝐼 𝐢 1 π‘Œ 𝐢 2 |0⟩ β–ͺ π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|0⟩, |1⟩} ⇔ 𝐢 1 = 0 β–ͺ π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|+⟩, |βˆ’βŸ©} ⇔ 𝐢 1 = 1 𝐢 1 = β„Ž 𝑨 βŠ• β„Ž 𝑨’ β‡’ πΌπ‘—π‘’π‘—π‘œπ‘• the basis equivalent to hiding 𝐢 2 = Οƒ 𝑦 𝑗 βŠ• 𝑦 𝑗 β€² β‹… 𝑐 𝑗 𝑛𝑝𝑒 2 β‹… 𝐢 1 βŠ• 𝐢 1 = β„Ž 𝑨 βŠ• β„Ž 𝑨’ [β„Ž 𝑨 β‹… 1 βŠ• 𝐢 1 ] Using the definition of 𝑔 : β€’ β„Žπ‘π‘›π‘π‘›π‘π‘ π‘žβ„Žπ‘—π‘‘ 𝑕 𝑨 + 𝑑 β‹… 𝑨 0 𝑔 𝑨, 𝑑 = 𝑕 𝑨 + 𝑑 β‹… 𝑕 𝑨 0 = β€’ 𝑕 is injective , the 2 preimages of 𝑔 are: 𝑦 = 𝑨, 0 π‘π‘œπ‘’ 𝑦’ = 𝑨 + 𝑨 0 , 1 β‡’ 𝑨’ = 𝑨 + 𝑨 0 β„Ž is homomorphic: β€’ 𝐢 1 = β„Ž 𝑨 βŠ• β„Ž 𝑨 β€² = β„Ž 𝑨 β€² βˆ’ 𝑨 = β„Ž(𝑨 0 )

  26. Security (in the quantum malicious setting) Recall: π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|0⟩ , |1⟩ , |+⟩ , |βˆ’βŸ©} 𝐢 1 = the basis bit of π‘ƒπ‘£π‘’π‘žπ‘£π‘’ π‘ƒπ‘£π‘’π‘žπ‘£π‘’ = 𝐼 𝐢 1 π‘Œ 𝐢 2 |0⟩ β–ͺ π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|0⟩, |1⟩} ⇔ 𝐢 1 = 0 β–ͺ π‘ƒπ‘£π‘’π‘žπ‘£π‘’ ∈ {|+⟩, |βˆ’βŸ©} ⇔ 𝐢 1 = 1 𝐢 1 = β„Ž 𝑨 βŠ• β„Ž 𝑨’ β‡’ πΌπ‘—π‘’π‘—π‘œπ‘• the basis equivalent to hiding 𝐢 2 = Οƒ 𝑦 𝑗 βŠ• 𝑦 𝑗 β€² β‹… 𝑐 𝑗 𝑛𝑝𝑒 2 β‹… 𝐢 1 βŠ• 𝐢 1 = β„Ž 𝑨 βŠ• β„Ž 𝑨’ [β„Ž 𝑨 β‹… 1 βŠ• 𝐢 1 ] Using the definition of 𝑔 : β€’ β„Žπ‘π‘›π‘π‘›π‘π‘ π‘žβ„Žπ‘—π‘‘ 𝑕 𝑨 + 𝑑 β‹… 𝑨 0 𝑔 𝑨, 𝑑 = 𝑕 𝑨 + 𝑑 β‹… 𝑕 𝑨 0 = β€’ 𝑕 is injective , the 2 preimages of 𝑔 are: 𝑦 = 𝑨, 0 π‘π‘œπ‘’ 𝑦’ = 𝑨 + 𝑨 0 , 1 β‡’ 𝑨’ = 𝑨 + 𝑨 0 β„Ž is homomorphic: β€’ 𝐢 1 = β„Ž 𝑨 βŠ• β„Ž 𝑨 β€² = β„Ž 𝑨 β€² βˆ’ 𝑨 = β„Ž(𝑨 0 ) β€’ β„Ž is hardcore predicate: 𝐢 1 = β„Ž 𝑨 0 𝑗𝑑 β„Žπ‘—π‘’π‘’π‘“π‘œ

  27. Security (in the quantum malicious setting) Overview  The client picks at random 𝑨 0 and then sends 𝐿 β€² = 𝐿, 𝑕 𝐿 𝑨 0 to the Server (as the public description of 𝑔 )  As the basis of the output qubit is 𝐢 1 = β„Ž(𝑨 0 ) , then the basis is basically fixed by the Client at the very beginning of the protocol.  The output basis depends only on the Client’s random choice of 𝑨 0 and is independent of the Server’s communication.  Then, no matter how the Server deviates and no matter what are the messages (𝑧, 𝑐) sent by Server, to prove that the basis 𝐢 1 = β„Ž(𝑨 0 ) is completely hidden from the Server, is sufficient to use that β„Ž is a hardcore predicate.

  28. Extensions of QFactory

  29. Malicious 8-states QFactory  To use Malicious 4-states QFactory for applications where communication consists of |+ πœ„ ⟩ , with πœ„ ∈ {0, 𝜌 4 , … , 7𝜌 4 } , we provide a gadget that achieves such a state from 2 outputs of Malicious 4-states QFactory.

  30. Malicious 8-states QFactory  To use Malicious 4-states QFactory for applications where communication consists of |+ πœ„ ⟩ , with πœ„ ∈ {0, 𝜌 4 , … , 7𝜌 4 } , we provide a gadget that achieves such a state from 2 outputs of Malicious 4-states QFactory. 𝜌 𝜌 𝑝𝑣𝑒 = 𝑆 𝑀 1 𝜌 + 𝑀 2 2 + 𝑀 3 + 4 𝑀 3 = 𝐢 1 β€² βŠ• [ 𝐢 2 βŠ• 𝑑 2 β‹… 𝐢 1 ] 𝑀 2 = 𝐢 1 β€² βŠ• 𝐢 2 βŠ• [𝐢 1 β‹… (𝑑 1 βŠ• 𝑑 2 )] 𝑀 1 = 𝐢 2

  31. Malicious 8-states QFactory To use Malicious 4-states QFactory for applications where communication consists of  |+ πœ„ ⟩ , with πœ„ ∈ {0, 𝜌 4 , … , 7𝜌 4 } , we provide a gadget that achieves such a state from 2 outputs of Malicious 4-states QFactory. 𝜌 𝜌 𝑝𝑣𝑒 = 𝑆 𝑀 1 𝜌 + 𝑀 2 2 + 𝑀 3 + 4 𝑀 3 = 𝐢 1 β€² βŠ• [ 𝐢 2 βŠ• 𝑑 2 β‹… 𝐢 1 ] 𝑀 2 = 𝐢 1 β€² βŠ• 𝐢 2 βŠ• [𝐢 1 β‹… (𝑑 1 βŠ• 𝑑 2 )] 𝑀 1 = 𝐢 2 No information about the bases ( 𝑀 2 , 𝑀 3 ) of the new output state |π‘π‘£π‘’βŸ© is leaked:  We prove the basis blindness of the output of the gadget by a reduction to the  basis-blindness of 1 of the 2 outputs of Malicious 4-states QFactory; If you could determine 𝑀 2 and 𝑀 3 , then you would determine 𝐢 1 or 𝐢 1 β€² .

  32. Blind Measurements  Perform a measurement on a first qubit of an arbitrary state |πœ”βŸ© in such a way that the adversary is oblivious whether he is performing a measurement in 1 out of 2 possible basis (e.g. π‘Œ or π‘Ž basis).  Useful for classical verification of quantum computations (Mahadev FOCS18);

  33. Blind Measurements  Perform a measurement on a first qubit of an arbitrary state |πœ”βŸ© in such a way that the adversary is oblivious whether he is performing a measurement in 1 out of 2 possible basis (e.g. π‘Œ or π‘Ž basis).  Useful for classical verification of quantum computations (Mahadev FOCS18);  Achieved using the following gadget:

  34. Blind Measurements  Perform a measurement on an arbitrary state |πœ”βŸ© in such a way that the adversary is oblivious whether he is performing a measurement in 1 out of 2 possible basis (e.g. π‘Œ or π‘Ž basis).  Useful for classical verification of quantum computations (Mahadev FOCS18);  Achieved using the following gadget:  No information about the basis of the measurement is leaked;  We prove the measurement blindness of the output of the gadget by a reduction to the basis-blindness of Malicious 4-states QFactory;

  35. Classical verification of quantum computations  Basis-blindness is not sufficient for verifiable blind quantum computation;  To achieve verification, we combine Basis Blindness and Self-Testing ;

Recommend


More recommend