Malicious 4-states QFactory Required Assumptions 2 preimages for any This function is hard element in π½π π to invert. π Without the trapdoor π’ π , except if you have the hard to find π¦ β π¦β trapdoor π’ π associated such that π π (π¦) = π π (π¦β²) to the index function π Has the same domain as π π β π π¦ 1 β β π (π¦ 2 ) = β π (π¦ 2 β π¦ 1 ) and outputs a single bit. π π : πΈ β π injective, homomorphic, quantum-safe, trapdoor one-way; β π π π βΆ πΈ Γ 0, 1 β π When π¦ is sampled π π¦, π = α π π π¦ , ππ π = 0 uniformly at random, π π π π¦ β π π π¦ 0 = π π π¦ + π¦ 0 , ππ π = 1 it is hard to distinguish β π π¦ from a random bit. where π¦ 0 is chosen by the Client at random from the domain of π π
Malicious 4-states QFactory Protocol π·βπππ‘π (π, π’ π ) π·βπππ‘π π
Malicious 4-states QFactory Protocol π·βπππ‘π (π, π’ π ) π, π π·βπππ‘π π
Malicious 4-states QFactory Protocol π·βπππ‘π (π, π’ π ) π β π π, π π·βπππ‘π π π·ππππ£π’π π’βπ πππ ππ£ππ’ π π π
Malicious 4-states QFactory Protocol 0 π β© 0 π β© π·βπππ‘π (π, π’ π ) π β π π, π π·βπππ‘π π π·ππππ£π’π π’βπ πππ ππ£ππ’ π π π
Malicious 4-states QFactory Protocol 0 π β© 0 π β© β Ο π¦βπΈππ π π π¦ |0 π β© π·βπππ‘π (π, π’ π ) π β π π, π π·βπππ‘π π π·ππππ£π’π π’βπ πππ ππ£ππ’ π π π
Malicious 4-states QFactory Protocol 0 π β© 0 π β© β Ο π¦βπΈππ π π π¦ |0 π β© β Ο π¦βπΈππ π π π¦ |π π¦ β© π·βπππ‘π (π, π’ π ) π β π π, π π·βπππ‘π π π·ππππ£π’π π’βπ πππ ππ£ππ’ π π π
Malicious 4-states QFactory Protocol 0 π β© 0 π β© β Ο π¦βπΈππ π π π¦ |0 π β© β Ο π¦βπΈππ π π π¦ π π¦ = Ο π§βπ½π π π ( π¦ + |π¦ β² β©) β |π§β© π·βπππ‘π (π, π’ π ) π β π π, π π·βπππ‘π π π·ππππ£π’π π’βπ πππ ππ£ππ’ π π π
Malicious 4-states QFactory Protocol 0 π β© 0 π β© β π¦ |0 π β© β ( π¦ + |π¦ β² β©) β |π§β© β ( π¦ + |π¦ β² β©) β |π§β© = (|π¨β©|0β© + |π¨β²β©|1β©) β |π§β© ΰ· ΰ· π¦ π π¦ = ΰ· π¦βπΈππ π π π¦βπΈππ π π π§βπ½π π π π¦ = (π¨, 0) π¦β = (π¨β², 1) π·βπππ‘π (π, π’ π ) π β π π, π π·βπππ‘π π π·ππππ£π’π π’βπ πππ ππ£ππ’ π π π
Malicious 4-states QFactory Protocol 0 π β© 0 π β© β π¦ |0 π β© β ( π¦ + |π¦ β² β©) β |π§β© β ( π¦ + |π¦ β² β©) β |π§β© = (|π¨β©|0β© + |π¨β²β©|1β©) β |π§β© β (|π¨β©|0β©|0β© + |π¨β²β©|1β©|0β©) ΰ· ΰ· π¦ π π¦ = ΰ· π¦βπΈππ π π π¦βπΈππ π π π§βπ½π π π π·βπππ‘π (π, π’ π ) π β π π, π π·βπππ‘π π π·ππππ£π’π π’βπ πππ ππ£ππ’ π π π
Malicious 4-states QFactory Protocol ( π¦ + |π¦ β² β©) β |π§β© β ( π¦ + |π¦ β² β©) β |π§β© = (|π¨β©|0β© + |π¨β²β©|1β©) β |π§β© β (|π¨β©|0β©|0β© + |π¨β²β©|1β©|0β©) β |π¨β©|0β©|β(π¨)β© + |π¨β²β©|1β©|β(π¨β²)β© ΰ· π¦ π π¦ = ΰ· π¦βπΈππ π π π§βπ½π π π ΰ·ͺ π β |π¨β© |πβ© |β(π¨) β© π¨ π 0 π·βπππ‘π (π, π’ π ) π β π π, π π·βπππ‘π π π·ππππ£π’π π’βπ πππ ππ£ππ’ π π π
Malicious 4-states QFactory Protocol ( π¦ + |π¦ β² β©) β |π§β© β ( π¦ + |π¦ β² β©) β |π§β© = (|π¨β©|0β© + |π¨β²β©|1β©) β |π§β© β (|π¨β©|0β©|0β© + |π¨β²β©|1β©|0β©) β |π¨β©|0β©|β(π¨)β© + |π¨β²β©|1β©|β(π¨β²)β© β |π·πππππβ© ΰ· π¦ π π¦ = ΰ· π¦βπΈππ π π π§βπ½π π π ΰ·ͺ π β |π¨β© |πβ© |β(π¨) β© π¨ π 0 π·βπππ‘π π, π’ π π β π π, π π·βπππ‘π π π·ππππ£π’π π’βπ πππ ππ£ππ’ π π π
Malicious 4-states QFactory Protocol ( π¦ + |π¦ β² β©) β |π§β© β ( π¦ + |π¦ β² β©) β |π§β© = (|π¨β©|0β© + |π¨β²β©|1β©) β |π§β© β (|π¨β©|0β©|0β© + |π¨β²β©|1β©|0β©) β |π¨β©|0β©|β(π¨)β© + |π¨β²β©|1β©|β(π¨β²)β© β |π·πππππβ© ΰ· π¦ π π¦ = ΰ· π¦βπΈππ π π π§βπ½π π π ΰ·ͺ π β |π¨β© |πβ© |β(π¨) β© π¨ π 0 ππ£π’ππ£π’ β {|0β© , |1β© , |+β© , |ββ©} π·βπππ‘π π, π’ π π β π π, π π·βπππ‘π π π·ππππ£π’π π’βπ πππ ππ£ππ’ π π π
Malicious 4-states QFactory Protocol ( π¦ + |π¦ β² β©) β |π§β© β ( π¦ + |π¦ β² β©) β |π§β© = (|π¨β©|0β© + |π¨β²β©|1β©) β |π§β© β (|π¨β©|0β©|0β© + |π¨β²β©|1β©|0β©) β |π¨β©|0β©|β(π¨)β© + |π¨β²β©|1β©|β(π¨β²)β© β |π·πππππβ© ΰ· π¦ π π¦ = ΰ· π¦βπΈππ π π π§βπ½π π π ΰ·ͺ π β |π¨β© |πβ© |β(π¨) β© π¨ π 0 ππ£π’ππ£π’ β {|0β© , |1β© , |+β© , |ββ©} π·βπππ‘π π, π’ π π β π ππ£π’ππ£π’ = πΌ πΆ 1 π πΆ 2 |0β© π, π π·βπππ‘π π πΆ 1 = β π¨ β β π¨β π·ππππ£π’π π’βπ πππ ππ£ππ’ π π π πΆ 2 = Ο π¦ π β π¦ π β² β π π πππ 2 β πΆ 1 β [β π¨ β 1 β πΆ 1 ] π¦ = π¨, 0 π¦ β² = (π¨ β² , 1)
Malicious 4-states QFactory Protocol ( π¦ + |π¦ β² β©) β |π§β© β ( π¦ + |π¦ β² β©) β |π§β© = (|π¨β©|0β© + |π¨β²β©|1β©) β |π§β© β (|π¨β©|0β©|0β© + |π¨β²β©|1β©|0β©) β |π¨β©|0β©|β(π¨)β© + |π¨β²β©|1β©|β(π¨β²)β© β |π·πππππβ© ΰ· π¦ π π¦ = ΰ· π¦βπΈππ π π π§βπ½π π π ΰ·ͺ π β |π¨β© |πβ© |β(π¨) β© π¨ π 0 ππ£π’ππ£π’ β {|0β© , |1β© , |+β© , |ββ©} π·βπππ‘π π, π’ π π β π ππ£π’ππ£π’ = πΌ πΆ 1 π πΆ 2 |0β© π, π π·βπππ‘π π πΆ 1 = β π¨ β β π¨β π·ππππ£π’π π’βπ πππ ππ£ππ’ π π π πΆ 2 = Ο π¦ π β π¦ π β² β π π πππ 2 β πΆ 1 β [β π¨ β 1 β πΆ 1 ] π¦ = π¨, 0 π¦ β² = (π¨ β² , 1) πΈπππππ ππ |π·πππππβ©
Malicious 4-states QFactory Protocol ( π¦ + |π¦ β² β©) β |π§β© β ( π¦ + |π¦ β² β©) β |π§β© = (|π¨β©|0β© + |π¨β²β©|1β©) β |π§β© β (|π¨β©|0β©|0β© + |π¨β²β©|1β©|0β©) β |π¨β©|0β©|β(π¨)β© + |π¨β²β©|1β©|β(π¨β²)β© β |π·πππππβ© ΰ· π¦ π π¦ = ΰ· π¦βπΈππ π π π§βπ½π π π ΰ·ͺ π β |π¨β© |πβ© |β(π¨) β© π¨ π 0 ππ£π’ππ£π’ β {|0β© , |1β© , |+β© , |ββ©} π·βπππ‘π π, π’ π π β π ππ£π’ππ£π’ = πΌ πΆ 1 π πΆ 2 |0β© π, π π·βπππ‘π π πΆ 1 = β π¨ β β π¨β π·ππππ£π’π π’βπ πππ ππ£ππ’ π π π πΆ 2 = Ο π¦ π β π¦ π β² β π π πππ 2 β πΆ 1 β [β π¨ β 1 β πΆ 1 ] π¦ = π¨, 0 π¦ β² = (π¨ β² , 1) πΈπππππ ππ |π·πππππβ© π§, π
Malicious 4-states QFactory Protocol ( π¦ + |π¦ β² β©) β |π§β© β ( π¦ + |π¦ β² β©) β |π§β© = (|π¨β©|0β© + |π¨β²β©|1β©) β |π§β© β (|π¨β©|0β©|0β© + |π¨β²β©|1β©|0β©) β |π¨β©|0β©|β(π¨)β© + |π¨β²β©|1β©|β(π¨β²)β© β |π·πππππβ© ΰ· π¦ π π¦ = ΰ· π¦βπΈππ π π π§βπ½π π π ΰ·ͺ π β |π¨β© |πβ© |β(π¨) β© π¨ π 0 ππ£π’ππ£π’ β {|0β© , |1β© , |+β© , |ββ©} π·βπππ‘π π, π’ π π β π ππ£π’ππ£π’ = πΌ πΆ 1 π πΆ 2 |0β© π, π π·βπππ‘π π πΆ 1 = β π¨ β β π¨β π·ππππ£π’π π’βπ πππ ππ£ππ’ π π π πΆ 2 = Ο π¦ π β π¦ π β² β π π πππ 2 β πΆ 1 β [β π¨ β 1 β πΆ 1 ] π¦ = π¨, 0 π¦ β² = (π¨ β² , 1) πΈπππππ ππ |π·πππππβ© π§, π (π¦, π¦β) = π½ππ€(π’ π , π§) π·ππππ£π’π πΆ 1 , πΆ 2
Malicious 4-states QFactory Protocol ( π¦ + |π¦ β² β©) β |π§β© β ( π¦ + |π¦ β² β©) β |π§β© = (|π¨β©|0β© + |π¨β²β©|1β©) β |π§β© β (|π¨β©|0β©|0β© + |π¨β²β©|1β©|0β©) β |π¨β©|0β©|β(π¨)β© + |π¨β²β©|1β©|β(π¨β²)β© β |π·πππππβ© ΰ· π¦ π π¦ = ΰ· π¦βπΈππ π π π§βπ½π π π ΰ·ͺ π β |π¨β© |πβ© |β(π¨) β© π¨ π 0 ππ£π’ππ£π’ β {|0β© , |1β© , |+β© , |ββ©} π·βπππ‘π π, π’ π π β π ππ£π’ππ£π’ = πΌ πΆ 1 π πΆ 2 |0β© π, π π·βπππ‘π π πΆ 1 = β π¨ β β π¨β π·ππππ£π’π π’βπ πππ ππ£ππ’ π π π πΆ 2 = Ο π¦ π β π¦ π β² β π π πππ 2 β πΆ 1 β [β π¨ β 1 β πΆ 1 ] π¦ = π¨, 0 π¦ β² = (π¨ β² , 1) πΈπππππ ππ |π·πππππβ© π§, π (π¦, π¦β) = π½ππ€(π’ π , π§) π·ππππ£π’π πΆ 1 , πΆ 2 π―πππ π·πππππ
Security (in the quantum malicious setting) βͺ ππ£π’ππ£π’ = πΌ πΆ 1 π πΆ 2 |0β© βͺ πΆ 1 = the basis bit of ππ£π’ππ£π’ βͺ If πΆ 1 = 0 then ππ£π’ππ£π’ β {|0β©, |1β©} and if πΆ 1 = 1 then ππ£π’ππ£π’ β {|+β©, |ββ©} Server cannot do better than a random guess: β’ Blindness of the basis πΆ 1 of |ππ£π’ππ£π’β© β’ πΆ 1 is a hard-core predicate (wrt the function g); against malicious adversaries. Theorem : No matter what Bob does, β’ he cannot determine πΆ 1 .
Security (in the quantum malicious setting) β’ πΆ 1 is a hard-core predicate βΉ basis -bli lindness ss β’ The basis-blindness is the βmaximumβ security: β’ Even after an honest run we can at most guarantee basis blindness, but not full blindness about the output state: β’ ππ£π’ππ£π’ β {|0β© , |1β© , |+β© , |ββ©} 3 β’ Then the Adversary can determine πΆ 2 with probability at least 4 : β’ Makes a random guess ΰ·ͺ πΆ 1 and then measures ππ£π’ππ£π’ in the ΰ·ͺ πΆ 1 basis, obtaining measurement outcome ΰ·ͺ πΆ 2 : if ΰ·ͺ πΆ 1 = πΆ 1 then ΰ·ͺ πΆ 2 = πΆ 2 with probability 1 , otherwise 1 πΆ 2 = πΆ 2 with probability ΰ·ͺ 2 ; β’ Basis-blindness is proven to be sufficient for many secure computation protocols, e.g. blind quantum computation (UBQC protocol); β’ Basis-blindness is required for classical verification of QFactory; βΉ classical verification of quantum computations
Security (in the quantum malicious setting) Recall: ππ£π’ππ£π’ β {|0β© , |1β© , |+β© , |ββ©} ππ£π’ππ£π’ = πΌ πΆ 1 π πΆ 2 |0β© πΆ 1 = β π¨ β β π¨β πΆ 2 = Ο π¦ π β π¦ π β² β π π πππ 2 β πΆ 1 β [β π¨ β 1 β πΆ 1 ]
Security (in the quantum malicious setting) Recall: ππ£π’ππ£π’ β {|0β© , |1β© , |+β© , |ββ©} πΆ 1 = the basis bit of ππ£π’ππ£π’ ππ£π’ππ£π’ = πΌ πΆ 1 π πΆ 2 |0β© βͺ ππ£π’ππ£π’ β {|0β©, |1β©} β πΆ 1 = 0 βͺ ππ£π’ππ£π’ β {|+β©, |ββ©} β πΆ 1 = 1 πΆ 1 = β π¨ β β π¨β β πΌπππππ the basis equivalent to hiding πΆ 2 = Ο π¦ π β π¦ π β² β π π πππ 2 β πΆ 1 β πΆ 1 = β π¨ β β π¨β [β π¨ β 1 β πΆ 1 ]
Security (in the quantum malicious setting) Recall: ππ£π’ππ£π’ β {|0β© , |1β© , |+β© , |ββ©} πΆ 1 = the basis bit of ππ£π’ππ£π’ ππ£π’ππ£π’ = πΌ πΆ 1 π πΆ 2 |0β© βͺ ππ£π’ππ£π’ β {|0β©, |1β©} β πΆ 1 = 0 βͺ ππ£π’ππ£π’ β {|+β©, |ββ©} β πΆ 1 = 1 πΆ 1 = β π¨ β β π¨β β πΌπππππ the basis equivalent to hiding πΆ 2 = Ο π¦ π β π¦ π β² β π π πππ 2 β πΆ 1 β πΆ 1 = β π¨ β β π¨β [β π¨ β 1 β πΆ 1 ] Using the definition of π : β’ βππππππ πβππ π π¨ + π β π¨ 0 π π¨, π = π π¨ + π β π π¨ 0 =
Security (in the quantum malicious setting) Recall: ππ£π’ππ£π’ β {|0β© , |1β© , |+β© , |ββ©} πΆ 1 = the basis bit of ππ£π’ππ£π’ ππ£π’ππ£π’ = πΌ πΆ 1 π πΆ 2 |0β© βͺ ππ£π’ππ£π’ β {|0β©, |1β©} β πΆ 1 = 0 βͺ ππ£π’ππ£π’ β {|+β©, |ββ©} β πΆ 1 = 1 πΆ 1 = β π¨ β β π¨β β πΌπππππ the basis equivalent to hiding πΆ 2 = Ο π¦ π β π¦ π β² β π π πππ 2 β πΆ 1 β πΆ 1 = β π¨ β β π¨β [β π¨ β 1 β πΆ 1 ] Using the definition of π : β’ βππππππ πβππ π π¨ + π β π¨ 0 π π¨, π = π π¨ + π β π π¨ 0 = β’ π is injective , the 2 preimages of π are: π¦ = π¨, 0 πππ π¦β = π¨ + π¨ 0 , 1 β π¨β = π¨ + π¨ 0
Security (in the quantum malicious setting) Recall: ππ£π’ππ£π’ β {|0β© , |1β© , |+β© , |ββ©} πΆ 1 = the basis bit of ππ£π’ππ£π’ ππ£π’ππ£π’ = πΌ πΆ 1 π πΆ 2 |0β© βͺ ππ£π’ππ£π’ β {|0β©, |1β©} β πΆ 1 = 0 βͺ ππ£π’ππ£π’ β {|+β©, |ββ©} β πΆ 1 = 1 πΆ 1 = β π¨ β β π¨β β πΌπππππ the basis equivalent to hiding πΆ 2 = Ο π¦ π β π¦ π β² β π π πππ 2 β πΆ 1 β πΆ 1 = β π¨ β β π¨β [β π¨ β 1 β πΆ 1 ] Using the definition of π : β’ βππππππ πβππ π π¨ + π β π¨ 0 π π¨, π = π π¨ + π β π π¨ 0 = β’ π is injective , the 2 preimages of π are: π¦ = π¨, 0 πππ π¦β = π¨ + π¨ 0 , 1 β π¨β = π¨ + π¨ 0 β is homomorphic: β’ πΆ 1 = β π¨ β β π¨ β² = β π¨ β² β π¨ = β(π¨ 0 )
Security (in the quantum malicious setting) Recall: ππ£π’ππ£π’ β {|0β© , |1β© , |+β© , |ββ©} πΆ 1 = the basis bit of ππ£π’ππ£π’ ππ£π’ππ£π’ = πΌ πΆ 1 π πΆ 2 |0β© βͺ ππ£π’ππ£π’ β {|0β©, |1β©} β πΆ 1 = 0 βͺ ππ£π’ππ£π’ β {|+β©, |ββ©} β πΆ 1 = 1 πΆ 1 = β π¨ β β π¨β β πΌπππππ the basis equivalent to hiding πΆ 2 = Ο π¦ π β π¦ π β² β π π πππ 2 β πΆ 1 β πΆ 1 = β π¨ β β π¨β [β π¨ β 1 β πΆ 1 ] Using the definition of π : β’ βππππππ πβππ π π¨ + π β π¨ 0 π π¨, π = π π¨ + π β π π¨ 0 = β’ π is injective , the 2 preimages of π are: π¦ = π¨, 0 πππ π¦β = π¨ + π¨ 0 , 1 β π¨β = π¨ + π¨ 0 β is homomorphic: β’ πΆ 1 = β π¨ β β π¨ β² = β π¨ β² β π¨ = β(π¨ 0 ) β’ β is hardcore predicate: πΆ 1 = β π¨ 0 ππ‘ βπππππ
Security (in the quantum malicious setting) Overview ο΅ The client picks at random π¨ 0 and then sends πΏ β² = πΏ, π πΏ π¨ 0 to the Server (as the public description of π ) ο΅ As the basis of the output qubit is πΆ 1 = β(π¨ 0 ) , then the basis is basically fixed by the Client at the very beginning of the protocol. ο΅ The output basis depends only on the Clientβs random choice of π¨ 0 and is independent of the Serverβs communication. ο΅ Then, no matter how the Server deviates and no matter what are the messages (π§, π) sent by Server, to prove that the basis πΆ 1 = β(π¨ 0 ) is completely hidden from the Server, is sufficient to use that β is a hardcore predicate.
Extensions of QFactory
Malicious 8-states QFactory ο΅ To use Malicious 4-states QFactory for applications where communication consists of |+ π β© , with π β {0, π 4 , β¦ , 7π 4 } , we provide a gadget that achieves such a state from 2 outputs of Malicious 4-states QFactory.
Malicious 8-states QFactory ο΅ To use Malicious 4-states QFactory for applications where communication consists of |+ π β© , with π β {0, π 4 , β¦ , 7π 4 } , we provide a gadget that achieves such a state from 2 outputs of Malicious 4-states QFactory. π π ππ£π’ = π π 1 π + π 2 2 + π 3 + 4 π 3 = πΆ 1 β² β [ πΆ 2 β π‘ 2 β πΆ 1 ] π 2 = πΆ 1 β² β πΆ 2 β [πΆ 1 β (π‘ 1 β π‘ 2 )] π 1 = πΆ 2
Malicious 8-states QFactory To use Malicious 4-states QFactory for applications where communication consists of ο΅ |+ π β© , with π β {0, π 4 , β¦ , 7π 4 } , we provide a gadget that achieves such a state from 2 outputs of Malicious 4-states QFactory. π π ππ£π’ = π π 1 π + π 2 2 + π 3 + 4 π 3 = πΆ 1 β² β [ πΆ 2 β π‘ 2 β πΆ 1 ] π 2 = πΆ 1 β² β πΆ 2 β [πΆ 1 β (π‘ 1 β π‘ 2 )] π 1 = πΆ 2 No information about the bases ( π 2 , π 3 ) of the new output state |ππ£π’β© is leaked: ο΅ We prove the basis blindness of the output of the gadget by a reduction to the ο΅ basis-blindness of 1 of the 2 outputs of Malicious 4-states QFactory; If you could determine π 2 and π 3 , then you would determine πΆ 1 or πΆ 1 β² .
Blind Measurements ο΅ Perform a measurement on a first qubit of an arbitrary state |πβ© in such a way that the adversary is oblivious whether he is performing a measurement in 1 out of 2 possible basis (e.g. π or π basis). ο΅ Useful for classical verification of quantum computations (Mahadev FOCS18);
Blind Measurements ο΅ Perform a measurement on a first qubit of an arbitrary state |πβ© in such a way that the adversary is oblivious whether he is performing a measurement in 1 out of 2 possible basis (e.g. π or π basis). ο΅ Useful for classical verification of quantum computations (Mahadev FOCS18); ο΅ Achieved using the following gadget:
Blind Measurements ο΅ Perform a measurement on an arbitrary state |πβ© in such a way that the adversary is oblivious whether he is performing a measurement in 1 out of 2 possible basis (e.g. π or π basis). ο΅ Useful for classical verification of quantum computations (Mahadev FOCS18); ο΅ Achieved using the following gadget: ο΅ No information about the basis of the measurement is leaked; ο΅ We prove the measurement blindness of the output of the gadget by a reduction to the basis-blindness of Malicious 4-states QFactory;
Classical verification of quantum computations ο΅ Basis-blindness is not sufficient for verifiable blind quantum computation; ο΅ To achieve verification, we combine Basis Blindness and Self-Testing ;
Recommend
More recommend