alessandro vicini
play

Alessandro Vicini University of Milano, INFN Milano CERN, - PowerPoint PPT Presentation

The Higgs transverse momentum distribution in Shower Montecarlo codes for pp H+X Alessandro Vicini University of Milano, INFN Milano CERN, December 16th 2013 in collaboration with: E. Bagnaschi, G. Degrassi important discussions with: S.


  1. The Higgs transverse momentum distribution in Shower Montecarlo codes for pp → H+X Alessandro Vicini University of Milano, INFN Milano CERN, December 16th 2013 in collaboration with: E. Bagnaschi, G. Degrassi important discussions with: S. Frixione, M. Grazzini, F. Maltoni, P . Nason, C. Oleari Alessandro Vicini - University of Milano CERN, December 16th 2013

  2. Basic references for the Higgs ptH spectrum, including multiple parton emissions ● Analytical resummation of the Higgs ptH spectrum in HQET Balazs, Yuan, arXiv:hep-ph/0001103 Bozzi, Catani, De Florian, Grazzini, arXiv:hep-ph/0508068 De Florian, Ferrera, Grazzini, Tommasini, arXiv:1109.2109 ● Shower Montecarlo description of the Higgs ptH spectrum in HQET Frixione, Webber, arXiv:hep-ph/0309186 Alioli, Nason, Oleari, Re, arXiv:0812.0578 Hamilton, Nason, Re, Zanderighi, arXiv:1309.0017 ● quark mass effects Bagnaschi, Degrassi, Slavich, Vicini, arXiv:1111.2854 Mantler, Wiesemann, arXiv:1210.8263 S. Frixione, talk at Higgs Cross Section Working Group meeting, December 7th 2012 Grazzini, Sargsyan, arXiv:1306.4581 S. Frixione, talk at the HXSWG meeting, July 23rd 2013 A. Vicini, talk at the HXSWG meeting, July 23rd 2013 Banfi, Monni, Zanderighi, arXiv:1308.4634 Alessandro Vicini - University of Milano CERN, December 16th 2013

  3. Outline ● matching NLO matrix elements for inclusive Higgs production and Parton Shower ● quark mass effects in the SM ● two-scales vs one-scale description of the Higgs ptH distribution in presence of quark mass effects ● tuning the POWHEG parameter h to mimic the HRes shape ● uncertainty band computed with a variation of the parameter h Alessandro Vicini - University of Milano CERN, December 16th 2013

  4. Higgs transverse momentum distribution in the HQET (heavy top limit) ● the Higgs transverse momentum is due to its recoil against QCD radiation Bozzi Catani De Florian Grazzini, arXiv:hep-ph/0508068 ● at low ptH, the fixed order ptH distribution diverges for ptH → 0 (both at LO and at NLO) ● the resummation to all orders of the divergent log(ptH) terms yields a regular distribution in the limit ptH → 0 different approaches: analytical (up to NLO+NNLL), via Parton Shower (up to LO+NLL) Alessandro Vicini - University of Milano CERN, December 16th 2013

  5. Quark mass effects at fixed order (no resummation, no Parton Shower) g t, b H g 1 1.3 LHC 7 TeV LHC 7 TeV SM - m H = 120 GeV SM - m h = 120 GeV NLO-QCD, no EW NLO 1.2 0.1 1.1 H )(pb/GeV) 0.01 1 R (d � /dp t 0.9 0.001 m top � � with LO rescaling m top � � with LO rescaling m top exact mass dependence exact m t m b dependence m top , m bot exact mass dependence 0.8 R=ratio to (m top � � with LO rescaling) 0.0001 0.7 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 H (GeV) H (GeV) p t p t ● very good agreement between independent codes |M ( gg → gH ) | 2 = |M t + M b | 2 = |M t | 2 + 2Re( M t M † b ) + |M b | 2 ● every diagram is proportional to the corresponding Higgs-fermion Yukawa coupling → the bottom diagrams have a suppression factor mb/mt ~1/36 w.r.t. the corresponding top diagrams → the squared bottom diagrams are negligible (in the SM) the bottom effects are due to the top-bottom interference terms (genuine quantum effects) Alessandro Vicini - University of Milano CERN, December 16th 2013

  6. Quark mass effects after the resummation of multiple gluon emissions (beginning 2013) LO+NLL /dp H LO+NLL /dp H (d σ T ) / (d σ htl T ) 1.3 !'#) MC@NLO POWHEG 5/6!$!7 23 ratio of shapes htl LHC@8 TeV, m H = 125 GeV 89!:!; / !<!'("!123 µ F = µ R = Q Res = m H / 2 =8:0>6?4 1.2 t !'#( t+b 1.1 !'#' 1 !' , 0.9 !"#& ratio of distributions @AB!=CD/E1!.@-FGH G2I!=CD/E1!.@-J;K@.<*#$L G2I!=CD/E1!.@-J;K@.<'" 0.8 G2I!=CD/E1!.@-J;K@.<'$)#' !"#% ratio of shapes H. Mantler, M. Wiesemann, arXiv:1210.8263 0.7 !"#$ !" !(" !*" !+" !%" !'"" !'(" !'*" !'+" !'%" !("" !((" !(*" !(+" !(%" !)"" - ./ !01234 0 50 100 150 200 250 300 p H T [GeV] ● different impact of the quark-mass effects after the matching with Parton Shower or after the analytical resummation ● MC@NLO and Mantler-Wiesemann share an additive matching approach POWHEG has a different Sudakov form factor Alessandro Vicini - University of Milano CERN, December 16th 2013

  7. Matching NLO matrix elements and Parton Shower Alessandro Vicini - University of Milano CERN, December 16th 2013

  8. Matching NLO matrix elements and Parton Shower R s ( Φ R ) � � d σ NLO+PS = d Φ B ¯ B s ( Φ B ) ∆ s ( p min B ( Φ B ) ∆ s ( p T ( Φ )) + d Φ R R f ( Φ R ) , +d Φ R R reg ( Φ R ) ⊥ ) + d Φ R | B � � � B s = B ( Φ B ) + ¯ d Φ R | B R s ( Φ R | B ) V ( Φ B ) + Alessandro Vicini - University of Milano CERN, December 16th 2013

  9. Matching NLO matrix elements and Parton Shower R s ( Φ R ) � � d σ NLO+PS = d Φ B ¯ B s ( Φ B ) ∆ s ( p min B ( Φ B ) ∆ s ( p T ( Φ )) + d Φ R R f ( Φ R ) , +d Φ R R reg ( Φ R ) ⊥ ) + d Φ R | B � � � B s = B ( Φ B ) + ¯ d Φ R | B R s ( Φ R | B ) V ( Φ B ) + is the sum of all the real emission squared matrix elements, R = R reg + R div with a regular (divergent) behavior in the collinear limit R div = R s + R f the collinear divergent matrix elements can be split in the sum of their singular part plus a finite remainder enters in the Sudakov form factor ∆ s ( p T ( Φ )) R s Alessandro Vicini - University of Milano CERN, December 16th 2013

  10. Matching NLO matrix elements and Parton Shower R s ( Φ R ) � � d σ NLO+PS = d Φ B ¯ B s ( Φ B ) ∆ s ( p min B ( Φ B ) ∆ s ( p T ( Φ )) + d Φ R R f ( Φ R ) , +d Φ R R reg ( Φ R ) ⊥ ) + d Φ R | B � � � B s = B ( Φ B ) + ¯ d Φ R | B R s ( Φ R | B ) V ( Φ B ) + is the sum of all the real emission squared matrix elements, R = R reg + R div with a regular (divergent) behavior in the collinear limit R div = R s + R f the collinear divergent matrix elements can be split in the sum of their singular part plus a finite remainder enters in the Sudakov form factor ∆ s ( p T ( Φ )) R s MC@NLO POWHEG R s ∝ α s h 2 p 2 t P ij ( z ) B ( Φ B ) R s = R f = T R div R div h 2 + p 2 h 2 + p 2 T T R f = R − R s at low ptH, the damping factor → 1, R_div tends to its collinear approximation, at large ptH, the damping factor → 0 and suppresses R_div in the Sudakov and in the square bracket the scale h fixes the upper limit for the Sudakov form factor to play a role, effectively is the upper limit for the inclusion of multiple parton emissions the total cross section does NOT depend on the value of h Alessandro Vicini - University of Milano CERN, December 16th 2013

Recommend


More recommend