adaptive control and the definition of exponential
play

Adaptive Control and the Definition of Exponential Stability Travis - PowerPoint PPT Presentation

Adaptive Control and the Definition of Exponential Stability Travis E. Gibson and Anuradha M. Annaswamy American Control Conference, Chicago IL July 1, 2015 Objectives Prove that the following statement is incorrect If


  1. Adaptive Control and the Definition of Exponential Stability Travis E. Gibson † and Anuradha M. Annaswamy ‡ † ‡ American Control Conference, Chicago IL July 1, 2015

  2. Objectives Prove that the following statement is incorrect ◮ “If the reference model is persistently exciting then the adaptive system is globally exponentially stable” 2 / 15

  3. Objectives Prove that the following statement is incorrect ◮ “If the reference model is persistently exciting then the adaptive system is globally exponentially stable” Prove the following ◮ Adaptive systems can at best be uniformly asymptotically stable in the large 2 / 15

  4. Objectives Prove that the following statement is incorrect ◮ “If the reference model is persistently exciting then the adaptive system is globally exponentially stable” Prove the following ◮ Adaptive systems can at best be uniformly asymptotically stable in the large Main insights ◮ Indeed if the reference model is PE then after some time the plant will be PE, but after exactly how much time ? ◮ We will show how a PE condition on the reference model implies a weak PE condition on the plant state. 2 / 15

  5. Outline ◮ Definitions ◮ Stability ◮ Exponential Stability ◮ Persistent Excitation (PE) ◮ weak Persistent Excitation (PE ∗ ) ◮ Link between PE and Exponential Stability ◮ Link between PE ∗ and Uniform Asymptotic Stability ◮ Simulation Studies 3 / 15

  6. Uniform Stability in the Large (Global) x ( t ) = f ( x ( t ) , t ) ˙ x 0 � x ( t 0 ) s Solution s ( t ; x 0 , t 0 ) x 0 t 4 / 15

  7. Uniform Stability in the Large (Global) x ( t ) = f ( x ( t ) , t ) ˙ ǫ x 0 � x ( t 0 ) s δ Solution s ( t ; x 0 , t 0 ) x 0 t t 0 Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable : ∀ ǫ > 0 ∃ δ ( ǫ ) > 0 s.t. � x 0 � ≤ δ = ⇒ � s ( t ; x 0 , t 0 ) � ≤ ǫ . 4 / 15

  8. Uniform Stability in the Large (Global) η x ( t ) = f ( x ( t ) , t ) ˙ ǫ x 0 � x ( t 0 ) s t 0 + T δ, ρ Solution s ( t ; x 0 , t 0 ) x 0 t t 0 Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable : ∀ ǫ > 0 ∃ δ ( ǫ ) > 0 s.t. � x 0 � ≤ δ = ⇒ � s ( t ; x 0 , t 0 ) � ≤ ǫ . (ii) Uniformly Attracting in the Large : For all ρ , η ∃ T ( η , ρ ) � x 0 � ≤ ρ = ⇒ � s ( t ; x 0 , t 0 ) � ≤ η ∀ t ≥ t 0 + T . 4 / 15

  9. Uniform Stability in the Large (Global) η x ( t ) = f ( x ( t ) , t ) ˙ ǫ x 0 � x ( t 0 ) s t 0 + T δ, ρ Solution s ( t ; x 0 , t 0 ) x 0 t t 0 Definition: Uniform Stability in the Large (Massera, 1956) (i) Uniformly Stable : ∀ ǫ > 0 ∃ δ ( ǫ ) > 0 s.t. � x 0 � ≤ δ = ⇒ � s ( t ; x 0 , t 0 ) � ≤ ǫ . (ii) Uniformly Attracting in the Large : For all ρ , η ∃ T ( η , ρ ) � x 0 � ≤ ρ = ⇒ � s ( t ; x 0 , t 0 ) � ≤ η ∀ t ≥ t 0 + T . (iii) Uniformly Asymptotically Stable in the Large (UASL) = uniformly stable + uniformly bounded + uniformly attracting in the large . 4 / 15

  10. Exponential Stability κ � x 0 � x ( t ) = f ( x ( t ) , t ) ˙ κ � x 0 � e − ν ( t − t 0 ) x 0 x 0 � x ( t 0 ) ρ s Solution s ( t ; x 0 , t 0 ) t 0 t Definition: (Malkin, 1935; Kalman and Bertram, 1960) (i) Exponentially Stable (ES): ∀ ρ > 0 ∃ ν ( ρ ) , κ ( ρ ) s.t. ⇒ � s ( t ; x 0 , t 0 ) � ≤ κ � x 0 � e − ν ( t − t 0 ) � x 0 � ≤ ρ = 5 / 15

  11. Exponential Stability κ � x 0 � x ( t ) = f ( x ( t ) , t ) ˙ κ � x 0 � e − ν ( t − t 0 ) x 0 x 0 � x ( t 0 ) ρ s Solution s ( t ; x 0 , t 0 ) t 0 t Definition: (Malkin, 1935; Kalman and Bertram, 1960) (i) Exponentially Stable (ES): ∀ ρ > 0 ∃ ν ( ρ ) , κ ( ρ ) s.t. ⇒ � s ( t ; x 0 , t 0 ) � ≤ κ � x 0 � e − ν ( t − t 0 ) � x 0 � ≤ ρ = (ii) Exponentially Stable in the Large (ESL): ∃ ν , κ s.t. � s ( t ; x 0 , t 0 ) � ≤ κ � x 0 � e − ν ( t − t 0 ) 5 / 15

  12. Persistent Excitation ω : [ t 0 , ∞ ) → R p “Exogenous Signal” : Initial Condition : ω 0 = ω ( t 0 ) y ( t, ω ) : [ t 0 , ∞ ) × R p → R m Parameterized Function : 6 / 15

  13. Persistent Excitation ω : [ t 0 , ∞ ) → R p “Exogenous Signal” : Initial Condition : ω 0 = ω ( t 0 ) y ( t, ω ) : [ t 0 , ∞ ) × R p → R m Parameterized Function : Definition (i) Persistently Exciting (PE) : ∃ T , α s.t. � t + T y ( τ, ω ) y T ( τ, ω ) dτ ≥ α I t for all t ≥ t 0 and ω 0 ∈ R p . 6 / 15

  14. Persistent Excitation ω : [ t 0 , ∞ ) → R p “Exogenous Signal” : Initial Condition : ω 0 = ω ( t 0 ) y ( t, ω ) : [ t 0 , ∞ ) × R p → R m Parameterized Function : Definition (i) Persistently Exciting (PE) : ∃ T , α s.t. � t + T y ( τ, ω ) y T ( τ, ω ) dτ ≥ α I t for all t ≥ t 0 and ω 0 ∈ R p . (ii) weakly Persistently Exciting (PE ∗ ( ω, Ω)) : ∃ a compact set Ω ⊂ R p , T (Ω) > 0 , α (Ω) s.t. � t + T y ( τ, ω ) y T ( τ, ω ) dτ ≥ α I t for all ω 0 ∈ Ω and t ≥ t 0 . 6 / 15

  15. properties of adaptive control 7 / 15

  16. Adaptive Control x m Reference Model - x = Ax − Bθ T x + Bu Plant ˙ e � r Reference Model x m = Ax m + Br ˙ x � Plant ˆ θ T 8 / 15

  17. Adaptive Control x m Reference Model - x = Ax − Bθ T x + Bu Plant ˙ e � r Reference Model x m = Ax m + Br ˙ x � Plant ˆ θ T Unknown Parameter θ 8 / 15

  18. Adaptive Control x m Reference Model - x = Ax − Bθ T x + Bu Plant ˙ e � r Reference Model x m = Ax m + Br ˙ x � Plant u = ˆ θ T ( t ) x + r Control Input ˆ θ T Unknown Parameter θ ˆ Adaptive Parameter θ ( t ) 8 / 15

  19. Adaptive Control x m Reference Model - x = Ax − Bθ T x + Bu Plant ˙ e � Reference Model x m = Ax m + Br ˙ r x � Plant u = ˆ θ T ( t ) x + r Control Input ˆ θ T Error e = x − x m θ ( t ) = ˆ ˜ Parameter Error θ ( t ) − θ Unknown Parameter θ ˆ Adaptive Parameter θ ( t ) 8 / 15

  20. Adaptive Control x m Reference Model x = Ax − Bθ T x + Bu - Plant ˙ e � Reference Model x m = Ax m + Br ˙ r x � Plant u = ˆ θ T ( t ) x + r Control Input ˆ θ T Error e = x − x m θ ( t ) = ˆ ˜ Parameter Error θ ( t ) − θ Unknown Parameter θ ˆ Adaptive Parameter θ ( t ) ˙ ˆ θ ( t ) = − xe T PB Update Law 8 / 15

  21. Adaptive Control x m Reference Model x = Ax − Bθ T x + Bu - Plant ˙ e � Reference Model x m = Ax m + Br ˙ r x � Plant u = ˆ θ T ( t ) x + r Control Input ˆ θ T Error e = x − x m θ ( t ) = ˆ ˜ Parameter Error θ ( t ) − θ Unknown Parameter θ ˆ Adaptive Parameter θ ( t ) ˙ ˆ θ ( t ) = − xe T PB Update Law � � V ( e ( t ) , ˜ ˜ θ T ( t )˜ θ ( t )) = e T ( t ) Pe ( t ) + Trace Stability θ ( t ) 8 / 15

  22. Adaptive Control x m Reference Model x = Ax − Bθ T x + Bu - Plant ˙ e � Reference Model x m = Ax m + Br ˙ r x � Plant u = ˆ θ T ( t ) x + r Control Input ˆ θ T Error e = x − x m θ ( t ) = ˆ ˜ Parameter Error θ ( t ) − θ Unknown Parameter θ ˆ Adaptive Parameter θ ( t ) ˙ ˆ θ ( t ) = − xe T PB Update Law � � V ( e ( t ) , ˜ ˜ θ T ( t )˜ θ ( t )) = e T ( t ) Pe ( t ) + Trace Stability θ ( t ) V ≤ e T Qe ˙ 8 / 15

  23. Adaptive Control x m Reference Model x = Ax − Bθ T x + Bu - Plant ˙ e � Reference Model x m = Ax m + Br ˙ r x � Plant u = ˆ θ T ( t ) x + r Control Input ˆ θ T Error e = x − x m θ ( t ) = ˆ ˜ Parameter Error θ ( t ) − θ Unknown Parameter θ ˆ Adaptive Parameter θ ( t ) ˙ ˆ θ ( t ) = − xe T PB Update Law � � V ( e ( t ) , ˜ ˜ θ T ( t )˜ θ ( t )) = e T ( t ) Pe ( t ) + Trace Stability θ ( t ) V ≤ e T Qe ˙ � V ( e ( t 0 ) , ˜ � e � L ∞ ≤ θ ( t 0 )) /P min � V ( e ( t 0 ) , ˜ � e � L 2 ≤ θ ( t 0 )) /Q min 8 / 15

  24. Adaptive Control x m Reference Model x = Ax − Bθ T x + Bu - Plant ˙ e � Reference Model x m = Ax m + Br ˙ r x � Plant u = ˆ θ T ( t ) x + r Control Input ˆ θ T Error e = x − x m θ ( t ) = ˆ ˜ Parameter Error θ ( t ) − θ Unknown Parameter θ ˆ Adaptive Parameter θ ( t ) ˙ ˆ θ ( t ) = − xe T PB Update Law � � V ( e ( t ) , ˜ ˜ θ T ( t )˜ θ ( t )) = e T ( t ) Pe ( t ) + Trace Stability θ ( t ) V ≤ e T Qe ˙ � V ( e ( t 0 ) , ˜ � e � L ∞ ≤ θ ( t 0 )) /P min � V ( e ( t 0 ) , ˜ � e � L 2 ≤ θ ( t 0 )) /Q min The L-norms of e are initial condition dependent!! 8 / 15

  25. Exponential Stability and Adaptive Control Bx T ( t ) � � � e ( t ) � A z ( t ) � z ( t ) = ˙ z ( t ) , − x ( t ) B T P ˜ 0 θ ( t ) 9 / 15

  26. Exponential Stability and Adaptive Control Bx T ( t ) � � � e ( t ) � A z ( t ) � z ( t ) = ˙ z ( t ) , − x ( t ) B T P ˜ 0 θ ( t ) Theorem: (Morgan and Narendra, 1977) If x ( t ) ∈ PE then z ( t ) = 0 is UASL. 9 / 15

  27. Exponential Stability and Adaptive Control Bx T ( t ) � � � e ( t ) � A z ( t ) � z ( t ) = ˙ z ( t ) , − x ( t ) B T P ˜ 0 θ ( t ) Theorem: (Morgan and Narendra, 1977) If x ( t ) ∈ PE then z ( t ) = 0 is UASL. ESL ES UASL UAS + Linear 9 / 15

Recommend


More recommend