Problem Digital Net Cubature Error Bounds Attaining Error Tolerances Numerical Examples Discussion References Adaptive Algorithms for Stochastic Computation Fred J. Hickernell Department of Applied Mathematics, Illinois Institute of Technology hickernell@iit.edu mypages.iit.edu/~hickernell Joint work with Tony Jim´ enez Rugama Tony, Yuhan Ding, and Xuan Zhou will present posters on Tuesday afternoon Supported by NSF-DMS-1115392 Many thanks to the organizers September 15, 2014 hickernell@iit.edu Adaptive Algorithms for Stochastic Computation ICERM IBC & Stoch. Comp. 2014 1 / 18
Problem Digital Net Cubature Error Bounds Attaining Error Tolerances Numerical Examples Discussion References Some Problems in Stochastic Computation financial risk, statistical physics, photon transport, . . . µ “ E p Y q “ ? ż µ “ E r f p X qs “ R d f p x q ̺ p x q d x “ ? µ “ P p a ď Y ď b q “ ? p “ P p Y ď µ q , µ “ ? hickernell@iit.edu Adaptive Algorithms for Stochastic Computation ICERM IBC & Stoch. Comp. 2014 2 / 18
Problem Digital Net Cubature Error Bounds Attaining Error Tolerances Numerical Examples Discussion References Some Problems in Stochastic Computation financial risk, statistical physics, photon transport, . . . IID sampling, low discrepancy ÿ n µ n pt Y i uq : “ 1 sampling, error bounds, tractability, µ “ E p Y q « ˆ Y i n multi-level (Richtmyer, 1951; i “ 1 ż Niederreiter, 1992; Sloan and Joe, µ “ E r f p X qs “ R d f p x q ̺ p x q d x 1994; Hickernell, 1998; Dick and Pillichshammer, 2010; Novak and µ “ P p a ď Y ď b q “ ? Wo´ zniakowski, 2010; Dick et al., p “ P p Y ď µ q , µ “ ? 2014; Giles, 2014), . . . hickernell@iit.edu Adaptive Algorithms for Stochastic Computation ICERM IBC & Stoch. Comp. 2014 2 / 18
Problem Digital Net Cubature Error Bounds Attaining Error Tolerances Numerical Examples Discussion References Some Problems in Stochastic Computation financial risk, statistical physics, photon transport, . . . IID sampling, low discrepancy ÿ n µ n pt Y i uq : “ 1 sampling, error bounds, tractability, µ “ E p Y q « ˆ Y i n multi-level (Richtmyer, 1951; i “ 1 ż Niederreiter, 1992; Sloan and Joe, µ “ E r f p X qs “ R d f p x q ̺ p x q d x 1994; Hickernell, 1998; Dick and Pillichshammer, 2010; Novak and µ “ P p a ď Y ď b q “ ? Wo´ zniakowski, 2010; Dick et al., p “ P p Y ď µ q , µ “ ? 2014; Giles, 2014), . . . guaranteed, adaptive Monte Carlo Given a tolerance ε how do we (Hickernell et al., 2014; Jiang and choose n adaptively to make Hickernell, 2014), trapezoidal rule (Clancy et al., 2014), quasi-Monte | µ ´ ˆ µ n | ď ε Carlo (Hickernell and Jim´ enez (with high probability)? Rugama, 2014; Jim´ enez Rugama and Hickernell, 2014), GAIL (Choi et al., 2013–2014) hickernell@iit.edu Adaptive Algorithms for Stochastic Computation ICERM IBC & Stoch. Comp. 2014 2 / 18
Problem Digital Net Cubature Error Bounds Attaining Error Tolerances Numerical Examples Discussion References Recent Results § µ “ E p Y q “ ? (Hickernell et al., 2014), for somewhat different view see (Bayer et al., 2014) § Compute a highly probable upper bound on true variance, C 2 ˆ σ 2 n σ , using n σ IID samples. § Use a Berry-Esseen inequality (finite sample Central Limit Theorem) to find n such that P p | µ ´ ˆ µ n | ď ε q ě 99% . § Guaranteed for random variables in the cone of bounded kurtosis E rp Y ´ µ q 4 s{ σ 4 ď κ max p n σ , C q § Computational cost n — p σ { ε q 2 where σ is unknown. § µ “ E p Y q “ ? for Bernoulli Y (Jiang and Hickernell, 2014) § Can find n that guarantees that P p | µ ´ ˆ µ n | ď ε a q ě 99% or P p | µ ´ ˆ µ n | ď ε r | µ | q ě 99% . ş b § µ “ a f p x q d x “ ? (Clancy et al., 2014) § Can find n that guarantees that the trapezoidal rule with n trapezoids, ˆ µ n , gives | µ ´ ˆ µ n | ď ε . § Guaranteed for integrands in the cone Var p f 1 q ď τ � f 1 ´ r f p b q ´ f p a qs{p b ´ a q � 1 a § Computational cost n — Var p f 1 q{ ε where Var p f 1 q is unknown. hickernell@iit.edu Adaptive Algorithms for Stochastic Computation ICERM IBC & Stoch. Comp. 2014 3 / 18
Problem Digital Net Cubature Error Bounds Attaining Error Tolerances Numerical Examples Discussion References Digital Net Cubature Error via Walsh Expansions ż 2 m ´ 1 � � 8 ÿ ÿ ω p ℓ q r r 0 , 1 q d f p x q d x ´ 1 ω p m q ˚ S m ´ ℓ,m p f q � ď p � � � ˆ � � f p z i q � ď f λ 2 m � � proof 2 m 1 ´ p ω p ℓ q ˚ ω p ℓ q � � � i “ 0 λ “ 1 digital net nodes Walsh coefficients in dual net 1 Walsh functions & coefficients 8 ÿ p´ 1 q x k p κ q , x y ˆ 0.75 f p x q “ f κ κ “ 0 2 m ´ 1 ÿ f m,κ : “ 1 0.5 p´ 1 qx ˜ k p κ q , z i y f p z i q ˜ 2 m i “ 0 ÿ 8 0.25 ˆ f κ ` λ 2 m aliasing “ λ “ 0 0 0 0.25 0.5 0.75 1 hickernell@iit.edu Adaptive Algorithms for Stochastic Computation ICERM IBC & Stoch. Comp. 2014 4 / 18
Problem Digital Net Cubature Error Bounds Attaining Error Tolerances Numerical Examples Discussion References Digital Net Cubature Error via Walsh Expansions ż � 2 m ´ 1 � ÿ ÿ 8 ω p ℓ q r r 0 , 1 q d f p x q d x ´ 1 � ď p ω p m q ˚ S m ´ ℓ,m p f q � � � ˆ � � f p z i q � ď � � f λ 2 m proof 2 m 1 ´ p ω p ℓ q ˚ ω p ℓ q � � � i “ 0 λ “ 1 digital net nodes Walsh coefficients in dual net Walsh functions & coefficients ÿ 8 p´ 1 q x k p κ q , x y ˆ f p x q “ f κ κ “ 0 2 m ´ 1 ÿ f m,κ : “ 1 p´ 1 qx ˜ k p κ q , z i y f p z i q ˜ 2 m i “ 0 ÿ 8 ˆ “ f κ ` λ 2 m aliasing λ “ 0 hickernell@iit.edu Adaptive Algorithms for Stochastic Computation ICERM IBC & Stoch. Comp. 2014 4 / 18
Problem Digital Net Cubature Error Bounds Attaining Error Tolerances Numerical Examples Discussion References Digital Net Cubature Error via Walsh Expansions ż 2 m ´ 1 � � 8 ÿ ÿ ω p ℓ q r r 0 , 1 q d f p x q d x ´ 1 ω p m q ˚ S m ´ ℓ,m p f q � ď p � � � ˆ � � f p z i q � ď f λ 2 m � � proof 2 m 1 ´ p ω p ℓ q ˚ ω p ℓ q � � � i “ 0 λ “ 1 digital net nodes Walsh coefficients in dual net 2 ℓ ´ 1 8 ÿ ÿ 0 10 p � ˆ � � S ℓ,m p f q : “ f κ ` λ 2 m � , κ “ t 2 ℓ ´ 1 u λ “ 1 ÿ 8 −5 10 q � ˆ � � S m p f q : “ f κ � f κ | | ˆ κ “ 2 m 2 ℓ ´ 1 ÿ −10 10 � ˆ error ≤ ˆ � � S 0 , 12 ( f ) S ℓ p f q : “ f κ � ˇ S 12 ( f ) κ “ t 2 ℓ ´ 1 u S 8 ( f ) −15 2 ℓ ´ 1 ÿ 10 0 1 2 3 4 r � ˜ � � S ℓ,m p f q : “ f m,κ 10 10 10 10 10 � κ κ “ t 2 ℓ ´ 1 u p ω p m ´ ℓ q q q Cone conditions: S ℓ,m p f q ď p S m p f q , S m p f q ď ˚ ω p ℓ q S m ´ ℓ p f q . hickernell@iit.edu Adaptive Algorithms for Stochastic Computation ICERM IBC & Stoch. Comp. 2014 4 / 18
Problem Digital Net Cubature Error Bounds Attaining Error Tolerances Numerical Examples Discussion References Adaptively Attaining Absolute or Relative Error Tolerances ż 2 m ´ 1 � � ÿ ω p ℓ q r ´ 1 � ď p ω p m q ˚ S m ´ ℓ,m p f q � � Have r 0 , 1 q d f p x q d x f p z i q . � � 2 m 1 ´ p ω p ℓ q ˚ ω p ℓ q � � loooooooooooomoooooooooooon looooooomooooooon looooooomooooooon i “ 0 � err p m q µ µ m ˆ We want to find m and ˜ µ m that guarantees | µ ´ ˜ µ m | ď max p ε a , ε r | µ | q . Algorithm cubSobol g . Given tolerances ε a and ε r , fix ℓ and initalize m ą ℓ . Step 1. Compute the data-based error bound, err p m q , and ˆ µ m . Step 2. If err p m q is small enough such that err p m q ď 1 2 r max p ε a , ε r | ˆ µ m ´ err p m q | ` max p ε a , ε r | ˆ µ m ` err p m q | s , then return the shrinkage estimator µ m ` 1 µ m “ ˆ ˜ 2 r max p ε a , ε r | ˆ µ m ´ err p m q | ´ max p ε a , ε r | ˆ µ m ` err p m q | s . Step 3. Otherwise, increase m by one, and return to Step 1. Theorem. For integrands satifying the cone conditions cubSobol g proof , and the computational cost is O pr m ` $ p f qs 2 m q , for some succeeds m ď min t m 1 : r 1 ` p ω p m 1 q ˚ ω p ℓ q ˚ ω p ℓ qsp 1 ` ε r q p ω p ℓ q S m 1 ´ ℓ p f q ď max p ε a , ε r | µ | qr 1 ´ p ω p ℓ q ˚ ω p ℓ qsu proof more proof hickernell@iit.edu Adaptive Algorithms for Stochastic Computation ICERM IBC & Stoch. Comp. 2014 5 / 18
Recommend
More recommend