Activation Calculation for the Robinson Wiggler at the Metrology Light Source Y. Bergmann, K. Ott Helmholtz- Zentrum Berlin yvonne.bergmann@helmholtz-berlin.de 9th Int. Workshop on Radiation Safety at Synchrotron Radiation Sources RADSYNCH 2017, NSRRC Taiwan
MAP OF THE AREA MLS bERLinPro BESSY II RadSynch 2017, NSRRC, Taiwan 2
OUTLINE Overview Metrology Light Source Development of the Robinson Wiggler Activation Calculation Calculation with FLUKA Summary and Outlook RadSynch 2017, NSRRC, Taiwan 3
OVERVIEW MLS Undulator U125 Injection Septum MLS – KEY FIGURES Cavity Energy E [MeV] 50 to 629 Circumference [m] 48 Transfer line Microtron Beam Current I [mA] 1e-9 to 200 Beam Lifetime (150 mA) [h] 6 Cavity Voltage [kV] 500 Horizontal Emittance [nm rad] 117 Magnetic Field B [T] 1.3 Bending Radius R [m] 1.5 RadSynch 2017, NSRRC, Taiwan 4
A ROBINSON WIGGLER FOR THE MLS lifetime (Lt) fundamental for users of synchrotron radiation 2012 Standard user optic at MLS: Lt = 3,5 h at 150 mA 2014 change magnet optics new user optics: Lt = 6 h at 150 mA lifetime at MLS dominated by Touschek effect to increase lifetime improve Touschek lifetime Touschek lifetime depends on bunch size and length Redistributing damping partition of beam incr. bunch length incr. Lt Solution for existing accelerator ID consisting of alternating combined function magnets Robinson Wiggler RadSynch 2017, NSRRC, Taiwan 5
A ROBINSON WIGGLER FOR THE MLS 1 available straight section at MLS section of 2.5 m lengths Robinson Wiggler max. 1.74 m Gray: ferromagnetic yoke, copper: coils Poles have hyperbolic shape in horizontal direction, giving rise to linear, horizontal field gradient Design studies show: • normal conducting Robinson Wiggler will consist of twelve poles, incl. endpoles • to achieve necessary high field strengths use Cobalt-Iron steel (AFK502) for yoke • AFK502: compound of 49% Fe, 49% Co, and 2% V RadSynch 2017, NSRRC, Taiwan 6
MOTIVATION – ACTIVATION AT ACCELERATORS Activation is a serious hazard since the radiation remains after switching off the accelerator. Consequences: Additional radiation exposition at electron accelerators Bremsstrahlung and electron losses induce gamma-radiation leads to neutron radiation and activation thermal neutrons activation? RadSynch 2017, NSRRC, Taiwan 7
MOTIVATION – CROSS SECTION σ (n, γ ) Amount in yoke (25 meV) Fe 49% 2.6 barns Co 49% 37.2 barns V 2% 4.8 barns High amount of Cobalt might get activated by beamloss Neutron cross section express likelihood of interaction between incident neutron and target Thermal neutrons of great importance: cross section decrease by increasing kinetic energy RadSynch 2017, NSRRC, Taiwan 8
ACTIVATION CALCULATION Activation rate: Activation rate can be calculated by FLUKA (1) σ (E P ): cross section E P : energy of photons Φ (E P , r) . dE P : flux density of photons with energies between E P and E P +dE at r n= ρ . N L /A: number of nuclei per volume ρ : density of nuclei N A : avogadro constant = 6.022 E23 mol -1 A: mass number of nucleus Activation Equation: (2) = 1 for one radiation period ν : number of irradiation periods λ = (ln2)/T 1/2 (T 1/2 : half-life of nucleus) t B : irradtiation time t K : decay time RadSynch 2017, NSRRC, Taiwan 9
CALCULATION OF DOSE OF KNOWN REACTION 59 Co + n 60 Co * 60 Co + γ Assumption: cross section of Co predominantly for interaction with neutrons N 0 = 1.6 E9 neutrons/year/yoke calculated by Fluka N (x) N 0 N N ~ N 0 „method by hand“: t B =1 year, t K = 0 Activation (2) A v = 3.12 Bq / cm 3 With N = 25 neutrons / sec λ ( 60 Co)=4.17 E-9 / sec distance r of 10 cm With mSv m ² Γ ( 60 Co) = 0 . 354 h [ GBq ] RadSynch 2017, NSRRC, Taiwan 10
FLUKA CALCULATION: PRELIMINIARY CONSIDERATIONS 200 mA / injection 1800 injections / year revolution frequency 6.25 MHz Injection efficiency ~ 20% Loss of ~ 18 E14 electrons / year RadSynch 2017, NSRRC, Taiwan 11
FLUKA CALCULATION: OUTPUT For every region of interest: generated resnucle-file Fluka Output in residual nuclei / pP code (aktiv2 by K. Ott) which identifies radionuclides (> 200) with A and Z and its activation Output: list of radionuklides and its activation RadSynch 2017, NSRRC, Taiwan 12
A∞ A∞ RESULTS: RADIONUCLIDES AND ACTIVATION A∞ Nuklid NK A(t) T (1/2) 1 _ 1 H 2,59E-06 8,21E+00 8,21E+00 stabil 2 _ 1 H 2,45E-08 7,77E-02 7,77E-02 stabil 3_1H 2,94E-09 9,33E-03 5,10E-04 12.323 a 4 _ 2 He 3,34E-07 1,06E+00 1,06E+00 stabil A∞ Nuklid NK A(t) T (1/2) 46 _ 20 Ca 3,05E-10 9,68E-04 9,68E-04 stabil 47 _ 21 Sc 6,11E-10 1,94E-03 1,94E-03 3.35 d 1 _ 1 H 2,59E-06 8,21E+00 8,21E+00 stabil 49 _ 21 Sc 3,05E-10 9,68E-04 9,68E-04 57.2 min 47 _ 22 Ti 3,05E-10 9,68E-04 9,68E-04 stabil 2 _ 1 H 2,45E-08 7,77E-02 7,77E-02 stabil 48 _ 22 Ti 9,16E-10 2,91E-03 2,91E-03 stabil 3_1H 2,94E-09 9,33E-03 5,10E-04 12.323 a 49 _ 22 Ti 1,22E-09 3,87E-03 3,87E-03 stabil 50 _ 22 Ti 4,28E-09 1,36E-02 1,36E-02 stabil 4 _ 2 He 3,34E-07 1,06E+00 1,06E+00 stabil 51 _ 22 Ti 3,05E-10 9,68E-04 9,68E-04 5.8 m 48 _ 23 V 6,11E-10 1,94E-03 1,94E-03 15.97 d 46 _ 20 Ca 3,05E-10 9,68E-04 9,68E-04 stabil 49 _ 23 V 4,88E-09 1,55E-02 8,29E-03 330 d Beam 1 year 51 _ 23 V 5,49E-09 1,74E-02 1,74E-02 stabil 52 _ 23 V 1,53E-09 4,84E-03 4,84E-03 3.75 m no decay time 49 _ 24 Cr 3,05E-10 9,68E-04 9,68E-04 42 m 50 _ 24 Cr 4,01E-09 1,27E-02 1,27E-02 stabil 51 _ 24 Cr 2,59E-08 8,23E-02 8,23E-02 27.7 d 52 _ 24 Cr 5,02E-08 1,59E-01 1,59E-01 stabil 55 _ 24 Cr 6,11E-10 1,94E-03 1,94E-03 3.5 m 53 _ 24 Cr 1,13E-07 3,57E-01 3,57E-01 stabil 54 _ 24 Cr 5,24E-09 1,66E-02 1,66E-02 stabil 52 _ 25 Mn 6,71E-09 2,13E-02 2,13E-02 5.6 d 55 _ 24 Cr 6,11E-10 1,94E-03 1,94E-03 3.5 m 53 _ 25 Mn 6,14E-08 1,95E-01 3,65E-08 3.7e6 a 52 _ 25 Mn 6,71E-09 2,13E-02 2,13E-02 5.6 d 53 _ 25 Mn 6,14E-08 1,95E-01 3,65E-08 3.7e6 a 54 _ 25 Mn 5,82E-07 1,85E+00 1,03E+00 312.2 d 54 _ 25 Mn 5,82E-07 1,85E+00 1,03E+00 312.2 d 55 _ 25 Mn 2,00E-07 6,34E-01 6,34E-01 stabil 55 _ 25 Mn 2,00E-07 6,34E-01 6,34E-01 stabil 56 _ 25 Mn 3,13E-07 9,91E-01 9,91E-01 2.58 h 57 _ 25 Mn 3,09E-09 9,79E-03 9,79E-03 1.5 m 56 _ 25 Mn 3,13E-07 9,91E-01 9,91E-01 2.58 h 58 _ 25 Mn 3,05E-10 9,68E-04 9,68E-04 65.3 s 52 _ 26 Fe 3,05E-10 9,68E-04 9,68E-04 8.27 h 57 _ 25 Mn 3,09E-09 9,79E-03 9,79E-03 1.5 m 53 _ 26 Fe 7,23E-09 2,29E-02 2,29E-02 8.51 m 54 _ 26 Fe 2,50E-06 7,94E+00 7,94E+00 stabil 55 _ 26 Fe 7,93E-07 2,52E+00 5,64E-01 2.73 a 56 _ 26 Fe 6,96E-05 2,21E+02 2,21E+02 stabil 57 _ 26 Fe 9,07E-06 2,88E+01 2,88E+01 stabil 58 _ 26 Fe 6,66E-07 2,11E+00 2,11E+00 stabil 57 _ 27 Co 1,19E-07 3,77E-01 3,63E-01 271.79 d 59 _ 26 Fe 2,42E-07 7,67E-01 7,64E-01 44.503 d 56 _ 27 Co 6,10E-09 1,93E-02 1,86E-02 77.26 d 58 _ 27 Co 8,20E-07 2,60E+00 2,53E+00 70.86 d 57 _ 27 Co 1,19E-07 3,77E-01 3,63E-01 271.79 d 58 _ 27 Co 8,20E-07 2,60E+00 2,53E+00 70.86 d 59 _ 27 Co 7,64E-05 2,42E+02 2,42E+02 stabil 59 _ 27 Co 7,64E-05 2,42E+02 2,42E+02 stabil 60 _ 27 Co 3,21E-05 1,02E+02 1,25E+01 5.272 a 60 _ 27 Co 3,21E-05 1,02E+02 1,25E+01 5.272 a 61 _ 28 Ni 4,40E-10 1,39E-03 1,39E-03 stabil 61 _ 28 Ni 4,40E-10 1,39E-03 1,39E-03 stabil 62 _ 28 Ni 2,65E-09 8,40E-03 8,40E-03 stabil 63 _ 28 Ni 8,47E-09 2,68E-02 1,85E-04 100 a 62 _ 28 Ni 2,65E-09 8,40E-03 8,40E-03 stabil 64 _ 29 Cu 8,48E-10 2,69E-03 2,69E-03 12.7 h 65 _ 29 Cu 1,83E-09 5,81E-03 5,81E-03 stabil 66 _ 29 Cu 1,00E-08 3,18E-02 3,18E-02 5.1 m 64 _ 30 Zn 8,00E-09 2,54E-02 2,54E-02 stabil 65 _ 30 Zn 2,13E-08 6,75E-02 4,35E-02 244.3 d 66 _ 30 Zn 3,27E-06 1,04E+01 1,04E+01 stabil 67 _ 30 Zn 3,07E-07 9,72E-01 9,72E-01 stabil RadSynch 2017, NSRRC, Taiwan 13
Recommend
More recommend