aaron smith michael frow joe quddus donovan howell
play

Aaron Smith, Michael Frow, Joe Quddus, - PowerPoint PPT Presentation

Aaron Smith, Michael Frow, Joe Quddus, Donovan Howell, Thomas Reed, Clark Landrum, Brian Clifton May 2, 2006 The Big Black Box The Crude B Demand Big Crude A Black Crude C Profit


  1. $��%������� • First order kinetics with molar concentrations 2 − n i n ∑ ∑ ∑ = − rs K Cs Cs K = ro K Cs , , i k i k i i j , − i j j i j 2 1 k = i + j = 1 = + j i 1 ρ dCs 1 ρ dCo πφ 2 = i rs πφ 2 = i ro i 4 dz F i 4 dz F

  2. $��%������� • Rate Constant dependent on molecular weight − / B RT = + ⋅ + ⋅ B b b PM b PM = K A e , i j , 0 1 2 i j i j , , i j i j a b 2 PM   i −  PM  1.51E+12 42894 j 1 a   4 −   1.90E+08 -4.5 2 a ( ) 3   [ ] 2.06E+06 3 2 = + ⋅ + ⋅ A a a PM a PM e   , 0 1 2 i j i i 146.95 11.35

  3. $��%������� • Model inputs – Temperature and mass flow rate • Model Product form – Weight percents – Components are lumped into 4 categories • Gas: C1-C4 • Gasoline: C5-C10 • Gas Oil: C11-C21 • Residue: C22-C45

  4. Isomerization INPUT: MODEL: PFR Temperature H 2 /HC Ratio OUTPUT: Hydrocarbons C 4 -C 6

  5. ������� �����

  6. ������� ����� • Main reactants: n-Butane, n-Pentane, n-Hexane • Typically catalyzed-gas phase reaction • Low temperature favors isomer formation • Seven rate laws – Only one of n-Pentanes isomers forms n-Hex. n-Butane i-Butane 3-MP 2,2-DMB n-Pentane i-Pentane 2-Mp 2,3-DMB

  7. ������� ����� P P • n-Butane − − n C iso C = − ⋅ + ⋅ r K K 4 4 − 4 1 2 n C P P H H 2 2 • n-Pentane  0 . 125    [ ] C ( )    0 . 0000197  1 = − ⋅ 5 − ⋅ ⋅ − + ⋅ r K n − C t K C K C  [ ]  − 5 2 − 5 − 5 n C eq n C eq i C H       2 A future of energy production… • n-Hexane   5 5 ∑ ∑   = − ⋅ + r K C K C   , , i j i i i j j   1 1 = = j j

  8. ������� ����� • Model inputs – Temperature, mass flow rate, and H 2 /HC ratio • Model Product form – Weight percents of the individual isomers A future of energy production…

  9. Hydrocracking INPUT: MODEL: ºAPI Correlation K w H 2 /BBL OUTPUT: Naptha Light Heavy C 3 Up i-Butane n-Butane Gas Oil

  10. ������������� • Convert higher boiling point petroleum fractions into lighter fuel products A future of energy production…

  11. ������������� • Complementary Reactions – Cracking reactions • Provides olefins for hydrogenation R-C-C-C-R + heat → R-C=C + C-R – Hydrogenation reactions • Provides heat for cracking R-C=C + H 2 → R-C-C + heat

  12. ������������� • Feedstocks- Heavy distillate stocks, aromatics, cycle oils, and coker oils • Catalysts- zeolites • Operating conditions- Residuum Distillate Hydrogen 1200-1600 1000-2400 Consumption (SCFB) LHSV (hr -1 ) 0.2-1 0.5-10 Temperature (° F) 750 -800 500-900 Pressure (psi) 2000-3000 500-3000

  13. ������������� ������ ��"�������� • Correlated data from “Oil and Gas Journal” W.L. Nelson • Graphical correlated data was made continuous for hydrogen feed rate, Kw and API of the feed • 3 inputs • 5 outputs

  14. ������������� �����

  15. ������������� ����� 100 3.40926e 0.00157x y = 90 R 2 = 0.98555 32.5 2.67927e 0.00153x y = 30 R 2 = 0.98715 80 27.5 y = 2.20169e 0.00147x R 2 = 0.98763 25 70 1.80073e 0.00143x y = 22.5 R 2 = 0.98730 60 20 1.64851e 0.00129x y = R 2 = 0.99707 17.5 50 1.48461e 0.00120x y = 15 R 2 = 0.99938 y = 1.35330e 0.00110x 12.5 40 R 2 = 0.99840 10 1.17542e 0.00105x y = R 2 = 0.99820 30 7.5 1.03077e 0.00102x y = R 2 = 0.99873 20 0.91507e 0.00099x y = R 2 = 0.99903 0.84165e 0.00096x y = 10 R 2 = 0.99872 0 0 500 1000 1500 2000 2500 3000 Hydrogen Rate SCFB

  16. ������������� ����� 0.0018 4 y = 1.852E-05x 4 - 1.206E-03x 3 + 2.920E- 0.0016 02x 2 - 3.5 0.0014 2.531E-01x + 1.546E+00 3 R 2 = 9.992E-01 0.0012 B Constant A Constant 2.5 0.001 2 0.0008 y = 6.024E-11x 6 - 6.539E-09x 5 + 2.738E- 1.5 07x 4 - 5.600E-06x 3 + 5.935E-05x 2 - 2.996E- 0.0006 04x + 1.509E-03 1 0.0004 R 2 = 9.982E-01 0.5 0.0002 0 0 0 10 20 30 40 0 10 20 30 40 API of Feed API of Feed

  17. ������������� ����� Vol% of light naptha ° API Hydrogen Rate(SCFB) 7.5 10 12.5 15 17.5 20 22.5 25 2500 K w =12.1 9.25 11 13 16 21 30 45 80 diff. from K w =10.9 0.75 1 1 1.25 1.75 2.5 5 7.5 8.11% 9.09% 7.69% 7.81% 8.33% 8.33% 11.11% 9.38% 1500 K w =12.1 3.4 4 4.8 5.8 7.3 9.1 11.25 14.25 diff. from K w =10.9 0.35 0.45 0.5 0.55 0.7 1 1.5 1.75 10.29% 11.25% 10.42% 9.48% 9.59% 10.99% 13.33% 12.28% 500 K w =12.1 1.4 1.55 1.7 2 2.3 2.8 3.4 4.2 diff. from K w =10.9 0.1 0.17 0.2 0.2 0.25 0.3 0.35 0.4 7.14% 10.97% 11.76% 10.00% 10.87% 10.71% 10.29% 9.52%

  18. ������������� ����� 4 3.5 3 2.5 slope 2 y = -0.7691x + 11.739 R 2 = 0.9916 1.5 1 0.5 0 10.5 11 11.5 12 12.5 Kw

  19. ������������� �&������� % ( 1 . 00833 0 . 00833 ) • = − B H vol p K Ae 1 w % ( - 0.7691 K + 11.739) ( % ) = ⋅ vol p vol p 2 w 1 % 0.337 ( % ) = vol p vol p 3 1 % 0.186 ( % ) = vol p vol p 4 1 % 1 0.09 ( % ) = + vol p vol p 5 1

  20. ������������� ����� Hydrogen K w vol% p 1 vol% p 2 ° API (SCFB) 15 2500 12.1 16.4 39.9 9% 1% actual 15.0 40.5 20 750 10.9 3.3 11.0 7% 9% actual 3.5 10.0 30 1250 10.9 16.3 54.7 25% 27% actual 13.0 43.0

  21. Solvent Dewaxing INPUT: MODEL: Correlation Composition Temperature OUTPUT: Wax Lube Oil

  22. !��"��������#��� • Separate high pour point waxes from lubricating oils A future of energy production…

  23. !��"��������#��� • Feedstocks – Distillate and residual stocks – heavy gas oils – Solvents – Ketones (MEK) and Propane • Operating conditions – Solvent to oil ratio 1:1 to 4:1 – Desired pour point of product

  24. ����#��� ������ ��"�������� • Correlation from “Energy and Fuels” Krishna et. al. • 3 experimentally determined parameters • 3 inputs • 2 outputs 0 log( 100 / ) 1 / 2 = + + PPT A PC A CL A ( ) 100 ( ) − PC feed ( %) = OilYield wt ( ) 100 ( ) − PC product

  25. ����#��� ������������ BC2 NC6 NC7 NC8 NC9 NC10 ° C 375-500 375-400 400-425 425-450 450-475 475-500 wax wt% 46.8 44.88 47.28 48.41 48.72 47.05 CL 26.89 24.13 25.13 27.14 29.05 31 PPT act. 48 39 45 48 51 57 PPT pred. 48.0 41.0 44.0 48.9 52.8 55.9 error % 0.1% 5.0% 2.3% 1.8% 3.5% 1.9% dewaxing model Desired PPT= 10 PPT low 9.99 9.50 9.77 9.82 9.65 9.81 PPT high 10.01 10.50 10.23 10.18 10.35 10.19 wax wt% low 0.368 0.819 0.608 0.336 0.202 0.133 wax wt% high 0.369 0.931 0.643 0.352 0.220 0.139 yield low 0.5340 0.5558 0.5304 0.5176 0.5138 0.5302 yield high 0.5340 0.5564 0.5306 0.5177 0.5139 0.5302 error % 0.001% 0.112% 0.036% 0.016% 0.019% 0.006%

  26. Alkylation MODEL: INPUT: Correlation Iso-butane Butylene / Propylene Reaction time OUTPUT: Propane Butane Alkylate

  27. '��������� �(� Exxon-Mobil Autorefrigeration H 2 SO 4 alkylation http://www.prod.exxonmobil.com/refiningtechnologies/pdf/AlkyforWR02.pdf

  28. '��������� *Lots of side reactions

  29. '��������� ( / ) I I O = F E F 100 ( ) SV O ( / ) I O = volumetric isobutane/olefin ratio in feed F = I isobutane in reactor effluent, liquid volume % E ( SV ) = olefin space velocity, v/hr/v O F= Factor defined by A.V. Mrstik “Progress in Petroleum Technology” AV Mrstik et al. ACS Publications

  30. Polymerization MODEL: INPUT: Correlation Iso-butane Butylene / Propylene OUTPUT: Gasoline Diesel

  31. �������� ����� �������� ����� �������� ����� �������� ����� • Converts Propylenes and butylenes into saturated carbon chains • 1 st used Catalytic Solid Phosphoric Acid (SPA) on silica fell out of popularity in 1960s. • Now experimenting with Zeolites. C C C C → + C C C C C C C C C C C C C + C C C C C C C C C C C → - Polymerization reaction is highly exothermic and temperature is controlled either by injecting cold propane quench or by generating steam. - Propane is also recycled to help control temperature CO School of Mines http://jechura.com/ChEN409/11%20Alkylation.pdf http://www.personal.psu.edu/users/w/y/wyg100/fsc432/Lecture%2015.htm

  32. )������ )������ )������ )������ �������� ����� �������� ����� �������� ����� �������� ����� • Converts propylenes and butylenes into saturated carbon chains by means of zeolite catalysis (ZSM-5)

  33. )������ )������ )������ )������ �������� ����� �������� ����� �������� ����� �������� ����� • Converts propylenes and butylenes into saturated carbon chains by means of zeolite catalysis (ZSM-5)

  34. )������ )������ )������ )������ �������� ����� �������� ����� �������� ����� �������� ����� • Converts propylenes and butylenes into saturated carbon chains by means of zeolite catalysis (ZSM-5) Specific Gravity 0.73 Octane RON 92 MON 79 [Tabak, 1986]

  35. )������ )������ )������ �������� ����� )������ �������� ����� �������� ����� �������� ����� Charge Propylene partial pressure = 7~3470kPa. • 17wt.% Propylene *Depending on desired • 10.7 wt.% Propane chain length • 36.1 wt.% 1-butene • 27.2 wt.% isobutane Temperature = 550K Total Pressure = 5430 kPa

  36. )������ )������ )������ �������� ����� )������ �������� ����� �������� ����� �������� ����� Charge Propylene partial pressure = 7~3470kPa. • 17wt.% Propylene *Depending on desired • 10.7 wt.% Propane chain length • 36.1 wt.% 1-butene • 27.2 wt.% isobutane Temperature = 550K Total Pressure = 5430 kPa

  37. Polymerization Alkylation VS + PBR-gas phase - CSTR- liquid phase + Liquid catalysis - Solid catalysis + Produce either - Requires very vigorous diesel or gasoline agitation range chains - Typically .1lb m acid - Typical octane consumed per gallon number = 92 product (RON) ++Typical octane number = 96(RON)

  38. Deasphalting MODEL: INPUT: Correlation %Heavies Temperature Pressure OUTPUT: %Heavies Lube oil

  39. �������������*������ + �(� Typical Propane Deasphalting http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000300012&lng=pt&nrm=iso

  40. �������������*������ Types 1. Sub Critical. (below 369K) Modeled first by Robert E. Wilson in 1936. Hildebrand solubility parameters now used. 2. Super Critical. (above 369K) Now popular. High selectivity. No good model. Both remove greater than 99% asphalt

Recommend


More recommend