A well-balanced scheme for a 2D finite difference, non-hydrostatic atmospheric model Andreas Dobler 22/09/06 Thanks to: Christoph Schär, Jürg Schmidli, Stefan Wunderlich 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 1 / 18
Outline Introduction LTEs in atmosphere over steep topography Governing equations Analysis of LTEs in Model features terrain following Reduction of local coordinates truncation errors Cut-cell approach (LTEs) Conclusions 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 2 / 18
Problems with nearly hydrostatic flows The gravity term and the vertical pressure − z gradient are almost balanced but relatively big Local truncation errors may introduce large non- physical vertical accelerations With terrain following coordinates, metric terms appear in the horizontal derivatives, introducing local truncation errors there too 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 3 / 18
Governing equations 2D non-hydrostatic Euler equations in a dry, non-rotating atmosphere: ∂ x [ u e p ] ∂ z [ w e p ] ∂ t [ e ] =− [ 0 ] u w 0 2 p uw ∂ /∂ x u ∂ ∂ u ∂ 2 p ∂/∂ z w uw w Gravitational potential: = gz Sum of kinetic and internal energy: e 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 4 / 18
Model features Centred finite differences, non-staggered grid Time discretization: Leapfrog or Runge-Kutta Divergence filter Numerical diffusion / computational mixing Rayleigh damping at top boundary Co-existing finite volume version with cut-cells approach 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 5 / 18
How to reduce the LTEs Subtract a global, constant, hydrostatic background state ∗ =− ∗ ∇ ∇ p Subtract a local, time-dependent, hydrostatic background state that matches the actual state of the atmosphere in case of hydrostatic balance exactly -> no LTEs -> well-balanced method Cut-cells 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 6 / 18
Local, time-dependent background state for every grid cell Must fulfil the hydrostatic relation Must interpolate state variables at cell centre Must fulfil the equation of state for ideal gases -> ODE. Solvable with assumption on potential temperature (e.g., piecewise constant or linear) 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 7 / 18
Simulation of an atmosphere at rest over steep topography Gaussian hill, height: 1500 m, halfwidth: 5000 m Zero initial wind speed Constantly stratified atmosphere, initial bottom potential temperature 288 K, initial Brunt Väisälä frequency 0.01 s -1 6 hours simulation, dt = 0.3 s dx = 1000 m, dz ~ 300 m 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 8 / 18
Simulation of an atmosphere at rest over steep topography 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 9 / 18
Analysis of LTEs in terrain following coordinates – Vertical part Density is given exactly at grid points Error in vertical pressure gradient using centred finite differences : 2 E p z = z p zzz O z 4 6 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 10 / 18
Analysis of LTEs in terrain following coordinates – Horizontal part Invertible coordinate transformation s = s(x,z) Error in horizontal pressure gradient: 2 2 E p x = x s s x − s x O x 4 O s 4 p xxx s p sss p s s x 6 6 -> For a horizontal uniform pressure distribution this would be zero in an ideal cut-cell approach 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 11 / 18
Analysis of LTEs in terrain following coordinates – Horizontal part, continued Assumptions: (e.g., Gal-Chen), z ss = 0, s = x appropriate discretization of metric terms and horizontal uniform pressure distribution 3 1 3 p zz z xx 2 O x 2 2 E p x = x 2 z s 4 -> 2 − p zzz z x 6 p zzz z x z x 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 12 / 18
Finite Volume cut-cell approach Simple cut-cell approach implemented, but only in (old) finite volume version Topography boundary behaves like a symmetry line -> Momenta are reflected at boundary Cut-cells are treated as whole cells -> no stability problems due to small cell size Method is not strictly conservative 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 13 / 18
Cut-cells 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 14 / 18
Results for atmosphere at rest − 1 ] − 1 ] [ m s [ m s 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 15 / 18
Possible reasons for unexpected big LTEs Finite volume implementation details Cut-cell approach Bugs, etc. 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 16 / 18
Conclusions The well-balanced method reduces the LTEs associated with the pressure gradient force An ideal cut-cell approach eliminates the LTEs associated with metric terms in the horizontal pressure gradient force Therefore, an easy implementable cut-cell approach for testing purposes in our FD well- balanced model would be desirable 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 17 / 18
Thank you for your attention ! 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 18 / 18
Linear, non-hydrostatic flow u = 10 m/s Gaussian hill N = 0.01 1/s Height: 1 m Time: 5000 s Halfwidth: 1000 m dz ~ 300 m dx = 400 m 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 19 / 18
Linear, non-hydrostatic flow – exact solution (contour interval = 0.001 m/s) 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 20 / 18
Linear, non-hydrostatic flow – simulation results (contour interval = 0.001 m/s) Well-balanced Full equations 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 21 / 18
Linear, non-hydrostatic flow – simulation results (contour interval = 0.001 m/s) Without Rayleigh damping Well-balanced Full equations 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 22 / 18
Thank you again for your attention ! 22/09/06 Andreas Dobler / Institute for Atmospheric and Climate Science, ETH Zürich / andreas.dobler@env.ethz.ch 23 / 18
Recommend
More recommend