A Theory of A Theory of Elastic Presentation Space Elastic Presentation Space Sheelagh Carpendale Sheelagh Carpendale 2 Lenses in 3D 2 Lenses in 3D DEMO 1
Resulting Grid in 2D or 3D Resulting Grid in 2D or 3D Information in 2D Information in 2D 2
Information in 2D Information in 2D Bump mapped Bump mapped Magnify 3D & Magnify 2D • Magnify 3D • Magnify 3D – returns (x, y, z) – returns (x, y, z) – user responsible for perspective projection – user responsible for perspective projection • Magnify 2D • Magnify 2D – returns (x, y) on the baseplane – returns (x, y) on the baseplane – does perspective projection – does perspective projection – person using can keep everything 2D – person using can keep everything 2D 3
Magnify 2D reference viewpoint reference viewpoint view plane view plane Magnify 3D returns Magnify 3D returns d b d b Magnify 2D returns Magnify 2D returns h f h f base plane base plane x i x m x i x m Distance metrics - L 2 Distance metrics - L 2 Eucildean Eucildean 2 L 2 = (x 1 - x 2 ) 2 + (y 1 - y 2 ) 2 L 2 = (x 1 - x 2 ) 2 + (y 1 - y 2 ) 2 distance distance generalizing generalizing L p = (x 1 - x 2 ) p + (y 1 - y 2 ) p p L p = (x 1 - x 2 ) p + (y 1 - y 2 ) p distance distance 4
Distance metrics - L 1 Distance metrics - L 1 L 1 L 1 1 L 1 = | x 1 - x 2 | 1 + | y 1 - y 2 | 1 L 1 = | x 1 - x 2 | 1 + | y 1 - y 2 | 1 Manhattan metric Manhattan metric L 1 = | x 1 - x 2 | + | y 1 - y 2 | L 1 = | x 1 - x 2 | + | y 1 - y 2 | Simplifies to Simplifies to Distance metrics - L Distance metrics - L L L L = (x 1 - x 2 ) + (y 1 - y 2 ) L = (x 1 - x 2 ) + (y 1 - y 2 ) = max ( | x 1 - x 2 | , | y 1 - y 2 |) = max ( | x 1 - x 2 | , | y 1 - y 2 |) Simplifies to L Simplifies to L 5
L p -metrics L p -metrics L 1 L 1 L 2 L 2 L 3 L 3 p L p = (x 1 - x 2 ) p + (y 1 - y 2 ) p L p = (x 1 - x 2 ) p + (y 1 - y 2 ) p L L EPF - Partial dimensions EPF - Partial dimensions • Thus far distance calculated on both x an y • Thus far distance calculated on both x an y • EPF - Perspective wall • EPF - Perspective wall – linear drop-off function – linear drop-off function – distance based on x only – distance based on x only p L p = (x 1 - x 2 ) p L p = (x 1 - x 2 ) p – simplifies to – simplifies to dis = | x 1 - x 2 | dis = | x 1 - x 2 | 6
EPF - Partial dimensions EPF - Partial dimensions • Works for either x or y giving scrolls in • Works for either x or y giving scrolls in either direction either direction EPF - Partial dimensions EPF - Partial dimensions • Also works for partial x or y • Also works for partial x or y L p = ( x fac ( x 1 - x 2 )) p + ( y fac ( y 1 - y 2 )) p p L p = ( x fac ( x 1 - x 2 )) p + ( y fac ( y 1 - y 2 )) p 7
Zoom viewer aligned zoom zoom viewer aligned zoom zoom pan Step drop-off functions Magnified inset Manhattan lens 8
Magnification to Scale Step Functions Occluding step Non-occluding step Multiple level step lens library lens library Changing Drop-off Functions linear cosine Gaussian hemisphere hyperbola linear cosine Gaussian hemisphere hyperbola 9
lens library lens library Lens Library Lens Library focal focal connection connection distorted distorted region region context context connection connection Lens Library Lens Library lens lens 10
EPF - Insets EPF - Insets Magnified inset EPF - Offsets EPF - Offsets • Uses folding • Uses folding Magnified offset 11
EPF - Dragmag (Ware et al.) EPF - Dragmag (Ware et al.) An offset with An offset with visual cues visual cues (Ware et al.) DragMag EPF - Manhattan Lens EPF - Manhattan Lens Manhattan Lens Linear drop-off function Linear drop-off function Focal radius = lens radius Focal radius = lens radius 12
EPF - Perspective Wall (Mackinley et al.) EPF - Perspective Wall (Mackinley et al.) Perspective Wall Perspective Wall Linear drop-off function Linear drop-off function L distance metric L distance metric (Mackinley et al.) EPF - Document Lens (Robertson & Mackinley) EPF - Document Lens (Robertson & Mackinley) Document Lens Linear drop-off function Linear drop-off function L distance metric L distance metric (Robertson and Mackinley) 13
EPF - Graphical Fisheyes (Sarkar et al.) EPF - Graphical Fisheyes (Sarkar et al.) Graphical Fisheyes Linear drop-off function Linear drop-off function L 2 distance metric L 2 distance metric point focus point focus Extending EPS Extending EPS Folding Folding • windows provide freedom of repositioning • windows provide freedom of repositioning • windows cost detail-in-context • windows cost detail-in-context • distortion can provide detail-in-context • distortion can provide detail-in-context • detail-in-context cost freedom of • detail-in-context cost freedom of repositioning repositioning • can we have both? • can we have both? 14
Extending EPS Extending EPS Folding Folding Extending EPS Extending EPS Folding Folding 15
Multi-Scale View Multi-Scale View Folding Folding 16
Folding Folding An Integrated Lens An Integrated Lens A displacement-only, constrained, A displacement-only, constrained, radial, Gaussian lens radial, Gaussian lens 17
An Integrated Lens An Integrated Lens A displacement-only, constrained, A displacement-only, constrained, radial, Gaussian lens radial, Gaussian lens An Integrated Lens An Integrated Lens A displacement-only, constrained, A displacement-only, constrained, radial, Gaussian lens radial, Gaussian lens 18
Selectively Applying Displacement Selectively Applying Displacement Looking at edge congestion Looking at edge congestion Selectively Applying Displacement Selectively Applying Displacement Looking at edge congestion Looking at edge congestion 19
Selectively Applying Displacement Selectively Applying Displacement Looking at edge congestion Looking at edge congestion An Edge Distortion Lens An edge-displacement-only, An edge-displacement-only, constrained, radial, Gaussian lens constrained, radial, Gaussian lens 20
An Edge Distortion Lens An edge-displacement-only, An edge-displacement-only, constrained, radial, Gaussian lens constrained, radial, Gaussian lens References • S. Carpendale, D. J. Cowperthwaite and F. D. Fracchia (1995) Three- • S. Carpendale, D. J. Cowperthwaite and F. D. Fracchia (1995) Three- Dimensional Pliable Surfaces: For Effective Presentation of Visual Dimensional Pliable Surfaces: For Effective Presentation of Visual Information. In Proceedings of the 8th ACM Symposium on User Information. In Proceedings of the 8th ACM Symposium on User Interface Software and Technology. ACM, pages 217-226, 1995. Interface Software and Technology. ACM, pages 217-226, 1995. • S. Carpendale and C. Montagnese (2001) A Framework for Unifying • S. Carpendale and C. Montagnese (2001) A Framework for Unifying Presentation Space. In Proceedings of the 14th Annual ACM Presentation Space. In Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology. ACM Press, Symposium on User Interface Software and Technology. ACM Press, pages 61-70, 2001. pages 61-70, 2001. • S. Carpendale, J. Light and E. Pattison (2004) Achieving Higher • S. Carpendale, J. Light and E. Pattison (2004) Achieving Higher Magnification in Context. In Proceedings of the 17th annual ACM Magnification in Context. In Proceedings of the 17th annual ACM Symposium on User Interface Software and Technology, CHI Letters. Symposium on User Interface Software and Technology, CHI Letters. ACM, pages 71-80, 2004. ACM, pages 71-80, 2004. 21
Recommend
More recommend