a multiscale approach to the smart deployment of micro
play

A multiscale approach to the smart deployment of micro-sensors over - PowerPoint PPT Presentation

C entre for C omputational S tructural and M aterials M echanics A multiscale approach to the smart deployment of micro-sensors over flexible plates Giovanni Capellari, Francesco Caimmi, Matteo Bruggi, Stefano Mariani Politecnico di Milano


  1. C entre for C omputational S tructural and M aterials M echanics A multiscale approach to the smart deployment of micro-sensors over flexible plates Giovanni Capellari, Francesco Caimmi, Matteo Bruggi, Stefano Mariani Politecnico di Milano

  2. Damage (delamination) in composite structures 2 Syntactic foam/glass fibre composite sandwich delamination DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  3. Effects of embedded monitoring systems 3 inner (embedded) piezo effects of embedded fiber sensors after Kousourakis et al., Composites (2008) SHM modifies the stress-carrying capacity of the structural component surface mounted piezo after Tang et al., JIM (2011) DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  4. Surface-mounted MEMS-based sensing 4 MEMS evaluation board Features of 3-axis, digital output MEMS (micro electro-mechanical sensor) accelerometer LIS3LV02DQ (STM): full scale Β±2𝑕 β€’ β€’ bandwidth 640 Hz sensitivity 1,000 LSb(Least_Significant_bit)/ 𝑕 β€’ resolution 1 m 𝑕 β€’ β€’ weight 0.2 grams DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  5. 5 Validation of the SHM scheme Optimal sensor placement DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  6. Validation test: DCB test under cyclic loading 6 Sinusoidally varying imposed displacement u (at increasing ) DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  7. Validation test: test results and MEMS output 7 Load P varies smoothly MEMS output shows high-order frequency fluctuation DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  8. Validation test: theoretical model 8 (Bernoulli-Euler beam bending) Specimen compliance: a : delamination length Acceleration-load relation: : assumed constant (geometry dependent) In case of sinusoidal load: Moving to the frequency domain, through FFT: At the driving frequency: DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  9. Validation test: theoretical model 9 (Bernoulli-Euler beam bending) 𝛿 = | βˆ†π‘£ = πœ’ 𝑣| 2𝐷 Ξ΄ 𝑔 βˆ’ 𝑔 𝑣 = 𝜈 𝑏 3 Ξ΄ 𝑔 βˆ’ 𝑔 𝑣 We obtained a delamination length-sensing SHM system (Mariani et al., MEJ 2013, IEEE Sensors 2014) DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  10. 10 Validation of the SHM scheme Optimal sensor placement DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  11. Optimal sensor placement 11 DCB test examples of localized damaged regions Thin square, simply supported plate: Isotropic material: (dimensionless) Young modulus E =10.92 Poisson ratio n =0.3 DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  12. Optimization approach (coupling FEA and MMA) 12 undamaged plate solution damaged plate solution In case of a single damaged region (of known position), to maximize the sensitivity to the effects of damage: penalization term to approach number of possible pure 0-1 distributions (p>1) sensor locations (FE) β€œsensor density” max allowed at the i-th position number of sensors (Mariani-Bruggi et al., EO, JIM 2013) DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  13. Optimization approach (coupling FEA and MMA) 13 number of damaged areas In case of a multiple damaged regions (of known positions), to maximize the sensitivity to the magnitude of the effects of damage [FORM-1]: or, to maximize the sensitivity to damage [FORM-2]: To be adopted at each length-scale (two concatenated analyses in the cases to follow) DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  14. Square plate: optimal sensor placement – 14 damage anywhere at the macroscale simply supported plate [FORM-1] [FORM-2] DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  15. Rectangular plate: optimal sensor placement – 15 damage anywhere at the macroscale simply supported plate [FORM-1] [FORM-2] DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  16. Square plate: optimal sensor placement – 16 damage anywhere at the macroscale simply supported plate damaged area [FORM-1] [FORM-2] DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  17. Square plate: optimal sensor placement – 17 damage anywhere at the macroscale clamped plate [FORM-1] [FORM-2] DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  18. Square plate: optimal sensor placement – 18 damage anywhere clamped plate, distributed load [FORM-2], Multi-scale analysis: L =1 m (side length, or structural size) s =5 cm (element, or damaged area size) l =2.5 mm (sensor size) sensor macro-placement objective function sensor micro-placement DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  19. Square plate: optimal sensor placement – 19 damage anywhere clamped plate, concentrated load [FORM-2], Multi-scale analysis: L =1 m (side length, or structural size) s =5 cm (element, or damaged area size) l =2.5 mm (sensor size) sensor macro-placement objective function sensor micro-placement DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

  20. Conclusions 20 β€’ We proposed a MEMS-based SHM system, sensitive to damage (delamination) extent in composite β€’ We proposed a multi-scale topology optimization-like procedure to deploy MEMS, so as to maximize sensitivity to damage Ongoing activities and future work β€’ robustness of the SHM system β€’ networking of (possibly self-powered) MEMS sensors β€’ real-time damage detection and identification for flexible (composite) plates β€’ Application: engineered bike and ski helmets, to understand links between impacts and brain injuries Acknowledgments β€’ Italian MIUR-PRIN project Mechanics of microstructured materials: multi-scale identification, optimization and active control β€’ Italian Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM) β€’ Regione Lombardia and CILEA Consortium, grant M 2 -MEMS β€’ Fondazione Cariplo, project Safer Helmets DTIP 2011 - S. Mariani, S.E. Azam, A. Ghisi, A. Corigliano, B.Simoni G. Capellari, F. Caimmi, M. Bruggi, S. Mariani POLIMI

Recommend


More recommend