A histology-based model of quantitative T1 contrast for in-vivo cortical parcellation of high-resolution 7 Tesla brain MR images J. Dinse 1,2 , M. Waehnert 1 , C. L. Tardif 1 , A. Schäfer 1 , S. Geyer 1 , R. Turner 1 , P.-L. Bazin 1 Presented by Juliane Dinse 1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany 2 Simulation and Graphics Department, Faculty of Computer Science, Otto-von-Guericke University Magdeburg, Germany Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Cortical anatomy and cytoarchitecture Brodmann ‘ s Map, Cytoarchitecture, Atlas of von Economo Human brain 1909, lateral view Vogt, 1903 and Koskinas, 1925, (43 areas) (107 areas in total, 40 areas quantified) Cytoarchitectonic m apping of Brodm ann Areas ( BA) is accepted as standard reference. Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Myeloarchitecture Cell stain Myelin stain ? Myeloarchitecture Myeloarchitectonic Incomplete myelo- Vogt, 1903 map, E. Smith, architectonic map, 1907, lateral view Vogt & Vogt, 1910, frontal pole Research in this field is incom plete, inconclusive or even contradictory. Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Motivation Cytoarchitecture can be transformed into information regarding relative cortical myelin density Cortical myelin provides MRI contrast: Enables segregation of primary areas based on cortical profiles (Geyer et al., 2011; Dinse et al., 2013) Myeloarchitecture Model Cytoarchitecture Cortical depth Hellwig, 1993 2400 1400 T1 (ms) T1 m ap, 0 .5 3 m m , courtesy of M. Waehnert, 2013 Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Is there a way of mapping myeloarchitecture in-vivo onto the human cortical surface? BA 3b, layer IIIc: Step 1 Thick (%): 10 Cells: 30 Cell Size: 17 Step 2 Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
General assumptions Assum ption I : Assum ption I I : Cell size is proportional to myelin Horizontal pattern originates from concentration. axonal collaterals of cells. (Paldino & Harth, 1975) Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Step1: Generate myelin density profiles Obtain quantitative measures of cellular configuration of each cortical layer in each ROI (von Economo & Koskinas, 1925) Link measures to assumption I First estimate of myelin density Convolve graph with model given in assumption II (Paldino, 1975) Qualitative indicator of myelin concentration in our ROIs = * * Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Step 2: Normalization to T1 contrast Define individual range of T1 values for each ROI Normalize profiles into T1 contrast of gray matter (Rooney et al., 2007) Convolve with Lorentzian kernel to account for MR limiting effects (partial voluming and resolution) Quantitative indicator of myelin concentration in our ROIs = * Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Comparison between model and data Empirical Data Modelled Profile MR adjusted Mod. Profile BA 3b BA 4 BA 1 BA 2 Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Probabilistic Model Com parison Data vs Model W eighting Fct Scaling factor frequency frequency probability probability Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Data Acquisition 1 2 3 b 4 Brodmann Areas 4, 3b, 1 and 2 in primary motor-somatosensory cortex 9 subjects scanned with a 7 Tesla scanner and MP2RAGE sequence Marques et al., 2010; Hurley et al., 2010 0.5 mm isotropic T1 map with strong intra-cortical contrast in ROIs Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Processing Rigid image registration to MNI space at (0.4 mm) 3 MGDM whole brain segmentation CRUISE cortical surface extraction Han et al., NeuroImage 2004; Bazin et al., NeuroImage 2013 Cortical layering and profile sampling Waehnert et al., NeuroImage 2013 Manual labelling in ROIs W M/ GM and GM/ CSF boundaries Manual labels follow ing m acro- Cortical layering anatom ical landm arks in ROI s Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Probabilities on cortical surface 4 3 b 1 2 BA 4 0 1 If model and area match, probabilities are high Surfaces show inconsistent patterns w hen m odel and area do not m atch More details are on my poster (Wednesday, 2 – 4.30 pm, O4-01) Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Results on subject- and group level Single subject Labelled ROIs BA 4 BA 3 b BA 1 BA 2 Modelled BAs BA 4 0.87 (0.55) 0.0 (0.02) 0.83 (0.31) 0.86 (0.36) BA 3 b 0.71 (0.77) 0.87 (0.26) 0.77 ( 0.45) 0.64 (0.55) BA 1 0.19 (0.63) 0.66 (0.94) 0.89 (0.25) 0.81 (0.42) BA 2 0.68 (0.88) 0.0 (0.01) 0.80 (0.31) 0.83 (0.45) Group average BA 4 BA 3 b BA 1 BA 2 Modelled BAs BA 4 0.75 (0.47) 0.67 (0.33) 0.69 (0.31) 0.72 (0.36) BA 3 b 0.59 (0.51) 0.88 (0.26) 0.69 ( 0.47) 0.65 (0.47) BA 1 0.43 (0.52) 0.71 (0.54) 0.73 (0.45) 0.73 (0.39) BA 2 0.62 (0.52) 0.69 (0.31) 0.73 (0.46) 0.70 (0.45) Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Summary and Conclusion Differentiation of closely related cortical functional areas is possible in in-vivo vo at ultra-high resolution Generative model, which can predict quant quantitative e T1 m T1 maps aps Prospective motion correction and optimized coils may help to further increase the image quality For robust and automatic parcellation of many cortical areas, additional information is needed: - spatial priors and regularisation, topological constraints New insights into the relation between myeloar oarchitec ectur ure e and cyto toarc rchite tecture re Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Thanks to: Pierre-Louis Bazin Miriam Waehnert Christine Tardif Andreas Schäfer Prof. Robert Turner Stefan Geyer Enrico Reimer Katja Reimann http:/ / m ipav.cit.nih.gov/ Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Dōmo arigatō Poster: Wednesday, 2 – 4.30 pm O4-01 Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Images: courtesy of Nina Härtwich 1,2 Model vs. Resolution Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
T1 map atlas and qSM atlas 22 subjects, (0.5 mm) 3 10 subjects, (0.5 mm) 3 Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Post-mortem analysis: MRI 1 2 3b 4 6 MP2RAGE, T1 map, 200 3 μ m Superimposed Layering covering our ROIs Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Post-mortem analysis: histology 1 1 2 2 3b 4 3b 4 6 6 Myelin stain, 2.5 μ m MP2RAGE, T1 map, 200 3 μ m Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Images: courtesy of Nina Härtwich 1,2 Model vs. Histology: BA 2 Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Images: courtesy of Nina Härtwich 1,2 Model vs. Histology: res 0.05 mm Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Images: courtesy of Nina Härtwich 1,2 Model vs. Histology: res 0.5 mm Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Images: courtesy of Nina Härtwich 1,2 Model vs. Histology: res 1 mm Juliane Dinse Max Planck Institute for Human Cognitive and Brain Sciences
Recommend
More recommend