a deterministic solution to smale s 17th problem
play

A deterministic solution to Smales 17th problem Algorithms and - PowerPoint PPT Presentation

A deterministic solution to Smales 17th problem Algorithms and complexity in algebraic geometry Simons Institute, Berkeley, December 16, 2015 Pierre Lairez TU Berlin Introduction The homotopy method Un algorithme dterministe Smale 17th


  1. A deterministic solution to Smale’s 17th problem Algorithms and complexity in algebraic geometry Simons Institute, Berkeley, December 16, 2015 Pierre Lairez TU Berlin

  2. Introduction The homotopy method Un algorithme déterministe Smale 17th problem “Can a zero of n complex polynomial equations in n unknowns be found approximately, on the average, in polynomial time with a uniform algorithm?” (S. Smale, 1998) Approximate root A point from which Newton’s iteration converges quadratically. Average polynomial time Polynomial w. r. t. input size, on average w. r. t. a reasonable input distribution, typically Gaussian. Uniform algorithm A BSS machine: unit cost arithmetic operations on exact real numbers.

  3. Introduction The homotopy method Un algorithme déterministe Symbolic vs. numeric Symbolic Knowing one root is knowing them all; the number of root is overpolynomial. Numeric Homotopy methods allow to approximate one root, disregarding the others. � a polynomial complexity is not ruled out. Typically ◮ n equations of degree 2 with n unknowns. � n + 2 � ∼ 1 2 n 3 . ◮ Input size: N = n 2 ◮ Number of roots: D = 2 n , this is overpolynomial in N .

  4. Introduction The homotopy method Un algorithme déterministe Symbolic vs. numeric Symbolic Knowing one root is knowing them all; the number of root is overpolynomial. Numeric Homotopy methods allow to approximate one root, disregarding the others. � a polynomial complexity is not ruled out. Typically ◮ n equations of degree n with n unknowns. � 2 n � ∼ Cn 1 / 2 4 n . ◮ Input size: N = n n ◮ Number of roots: D = n n , this is overpolynomial in N .

  5. Introduction The homotopy method Un algorithme déterministe Notations ◮ n and D , positive integers. ◮ H , the linear space of all systems of n equations of degree D with n unknowns ; also functions C n → C n . ◮ N , the complex dimension of H . ◮ H is endowed with a hermitian inner product. ◮ S ( H ) , the systems with unit norm.

  6. Introduction The homotopy method Un algorithme déterministe The homotopy method Input f ∈ H , a system to solve. Starting point Choose another g ∈ H of which we know a root ζ ∈ C n . Homotopy h 0 = g h k + 1 = h k + δ k · ( f − g ) z k + 1 = z k − ( d z k h k + 1 ) − 1 ( h k + 1 ( z k )) . z 0 = ζ End point If h K = f , then z K is an approximate root of f . ◮ How to choose the step size δ k ? ◮ How to choose the starting pair ( g , ζ ) ?

  7. Introduction The homotopy method Un algorithme déterministe The complexity of the homotopy method Shub, Smale, 90’s Shub and Smale: ◮ Gave a method to choose the δ k in terms of a condition number µ ( f , z ) ; ◮ For each n and D , proved the existence of a starting point ( g , ζ ) from which the homotopy method is efficient on the average. ◮ Gave a bound on the number of iteration in the homotopy method: � f number of iterations � cD 3 / 2 µ ( h , η ) 2 d h . g

  8. Introduction The homotopy method Un algorithme déterministe Random starting points Beltrán, Pardo, 2009 Beltrán and Pardo: ◮ Proved that a random starting point ( g , ζ ) is efficient on the (twofold) average. ◮ Discovered how to pick a random pair ( g , ζ ) . For us, Beltrán-Pardo algorithm is a function BP : S ( H ) × [ 0 , 1 ] N → C n such that ◮ BP ( f , a ) is an approximate root of f , for almost all f and a ; ◮ if f and a are uniformly distributed, then E ( cost BP ( f , a )) = O ( nD 3 / 2 N 2 ) .

  9. Introduction The homotopy method Un algorithme déterministe Smoothed analysis Bürgisser, Cucker, 2011 Bürgisser and Cucker: ◮ Proved that the smoothed complexity of Beltrán-Pardo algorithm is polynomial: sup [ E ( cost BP ( f )) ] = ∞ f ∈H � 1 σ nD 3 / 2 N 2 � but sup [ E ( cost BP ( f + ε )) ] = O , f ∈H where ε ∈ H is a random non centered Gaussian variable with variance σ 2 . ◮ Described a deterministic algorithm with average complexity N O ( log log N ) .

  10. Introduction The homotopy method Un algorithme déterministe Today Lairez, 2015 Deterministic algorithm with complexity O ( nD 3 / 2 N 2 ) .

  11. Introduction The homotopy method Un algorithme déterministe Duplication of the uniform dist. on [ 0 , 1 ] ◮ q > 0 an integer. ◮ x ∈ [ 0 , 1 ] a uniformly distributed random variable. def = 2 − q ⌊ 2 q x ⌋ ∈ [ 0 , 1 ] , the truncature of x to precision q . ◮ ⌊ x ⌋ q def ◮ { x } q = 2 q x − ⌊ 2 q x ⌋ ∈ [ 0 , 1 ] , the fractionary part. Proposition ◮ The probability distribution of ⌊ x ⌋ q converges to the uniform distribution [ 0 , 1 ] when q → ∞ . ◮ { x } q is uniformly distributed on [ 0 , 1 ] . ◮ ⌊ x ⌋ q and { x } q are independent.

  12. Introduction The homotopy method Un algorithme déterministe Duplication of the uniform dist. on S ( H ) ◮ q > 0 an integer. ◮ x ∈ S ( H ) a uniformly distributed random variable. def ◮ ⌊ x ⌋ q = [ . . . ] ∈ S ( H ) , the truncature of x to precision q . def ◮ { x } q = [ . . . ] ∈ S ( H ) , the fractionary part. Proposition ◮ The probability distribution of ⌊ x ⌋ q converges to the uniform distribution S ( H ) when q → ∞ . ◮ { x } q is almost uniformly distributed on S ( H ) . ◮ ⌊ x ⌋ q and { x } q are almost independent.

  13. Introduction The homotopy method Un algorithme déterministe

  14. Introduction The homotopy method Un algorithme déterministe A deterministic algorithm Derandomization of Beltrán-Pardo algorithm Beltrán-Pardo algorithm BP : S ( H ) × [ 0 , 1 ] N → C n .

  15. Introduction The homotopy method Un algorithme déterministe A deterministic algorithm Derandomization of Beltrán-Pardo algorithm Modified Beltrán-Pardo algorithm BP : S ( H ) × S ( H ) → C n .

  16. Introduction The homotopy method Un algorithme déterministe A deterministic algorithm Derandomization of Beltrán-Pardo algorithm Modified Beltrán-Pardo algorithm BP : S ( H ) × S ( H ) → C n .

  17. Introduction The homotopy method Un algorithme déterministe A deterministic algorithm Derandomization of Beltrán-Pardo algorithm Modified Beltrán-Pardo algorithm BP : S ( H ) × S ( H ) → C n . The algorithm, 1st try procedure DBP( f ) q ← a large enough integer � � return BP ⌊ f ⌋ q , � f � q end procedure

  18. Introduction The homotopy method Un algorithme déterministe A deterministic algorithm Derandomization of Beltrán-Pardo algorithm Modified Beltrán-Pardo algorithm BP : S ( H ) × S ( H ) → C n . The algorithm, 2nd try procedure DBP( f ) q ← ⌊ log 2 N ⌋ repeat q ← 2 q � � z ← BP ⌊ f ⌋ q , � f � q until z is an approximate root of f return z end procedure

  19. Introduction The homotopy method Un algorithme déterministe A deterministic algorithm Derandomization of Beltrán-Pardo algorithm Modified Beltrán-Pardo algorithm BP : S ( H ) × S ( H ) → C n . The algorithm, final version procedure DBP( f ) q ← ⌊ log 2 N ⌋ repeat q ← 2 q � � z ← BP ⌊ f ⌋ q , � f � with early abort q until z is an approximate root of f return z end procedure

  20. Introduction The homotopy method Un algorithme déterministe Homotopy continuation with early abort procedure HC’( f , g , z , q ) � � 101 D 3 / 2 µ ( g , z ) 2 d S ( f , g ) t ← 1 / while 1 > t do h ← Γ( g , f , t ) ⊲ “ tf + ( 1 − t ) g ” on the sphere z ← Newton ( h , z ) � � 101 D 3 / 2 µ ( h , z ) 2 d S ( f , g ) t ← t + 1 / abort if 151 D 3 / 2 µ ( h , z ) 2 > 2 q end while return z end procedure ◮ If � f − ˜ f � � 2 − q , then HC ’ ( f , g , z , q ) fails or returns an approximate root of ˜ f . ◮ In any case, it performs at most cD 3 / 2 � ˜ f g µ ( h , z ) 2 d h steps.

  21. Introduction The homotopy method Un algorithme déterministe Complexity analysis ◮ Let f ∈ S ( H ) be a uniformly distributed random variable. ◮ Let Ω be the number of iterations in DBP ( f ) . Proposition — E (Ω) � 7. (And the distribution is very light-tailed.) � The precision q is typically no more than 128 log N .

  22. Introduction The homotopy method Un algorithme déterministe Complexity analysis ◮ Let f ∈ S ( H ) be a uniformly distributed random variable. ◮ Let Ω be the number of iterations in DBP ( f ) . Proposition — E (Ω) � 7. (And the distribution is very light-tailed.) � The precision q is typically no more than 128 log N . Complexity analysis � � �� ◮ cost DBP ( f ) = � Ω O ( Nq k ) + cost BP’ ⌊ f ⌋ q k , � f � q k k = 1

  23. Introduction The homotopy method Un algorithme déterministe Complexity analysis ◮ Let f ∈ S ( H ) be a uniformly distributed random variable. ◮ Let Ω be the number of iterations in DBP ( f ) . Proposition — E (Ω) � 7. (And the distribution is very light-tailed.) � The precision q is typically no more than 128 log N . Complexity analysis � � �� ◮ cost DBP ( f ) = � Ω O ( Nq k ) + cost BP’ ⌊ f ⌋ q k , � f � q k k = 1 � � ◮ cost BP’ ⌊ f ⌋ q k , � f � ∼ cost BP ( ⌊ f ⌋ q k , g ) ∼ cost BP ( f , g ) q k

Recommend


More recommend