Affine and LFT modeling of systems with uncertainty: some benefits of descriptor forms Dimitri PEAUCELLE LAAS-CNRS - Universit´ e de Toulouse - FRANCE µ Control’12 Besanc ¸on May 31-June 1, 2012
Introduction ■ Outline ❶ Motivations for uncertain descriptor modeling ❷ Affine polytopic models ❸ LFT models - frequency dependent models ❹ Augmented descriptor models and conservatism reduction µ Control’12, May 31, Besanc 1 ¸on
❶ Motivations for uncertain descriptor modeling ■ Models issued from physics are naturally in descriptor form E ˙ x = Ax + Bu ● Example: mechanical system M ¨ θ + C ˙ θ + Kθ = u M : inertia ; C : friction ; K : stiffness ; u external forces ¨ ˙ − C − K M O θ θ I = + u ˙ O I θ I O θ O ● Example: robotic systems with Lagrange formulations [MG89] E may not be invertible ● Example: networks of systems with algebraic constraints describing links µ Control’12, May 31, Besanc 2 ¸on
❶ Motivations for uncertain descriptor modeling ■ Descriptor models can be converted to usual models ● Example: mechanical system θ + M − 1 C ˙ ¨ θ + M − 1 Kθ = M − 1 u ● Assumes that M − 1 is well-conditioned and known ● If some parameters are unknown: M (∆) , C (∆) , K (∆) θ + M − 1 (∆) C (∆) ˙ ¨ θ + M − 1 (∆) K (∆) θ = M − 1 (∆) u ● Increased complexity of the model ■ Descriptor models are preferable for describing systems with uncertainty µ Control’12, May 31, Besanc 3 ¸on
❶ Motivations for uncertain descriptor modeling ■ Example: DC motor I ˙ ω = bu regulated in speed u = − ω ● Parameters are assumed uncertain I = 1 + δ 1 , b = 1 + δ 2 ω = − 1 + δ 2 (1 + δ 1 ) ˙ ω = − (1 + δ 2 ) ω ⇒ ˙ ω 1 + δ 1 ● Model is rational w.r.t. uncertainties: exists an LFT representation ∆ w z ∆ ∆ Σ A B ∆ − 1 + δ 2 = A + B ∆ ∆( I − D ∆ ∆) − 1 C ∆ = ⋆ ∆ 1 + δ 1 C ∆ D ∆ ▲ Can be build with Robust Control toolbox of Matlab or LFRT [Mag05] µ Control’12, May 31, Besanc 4 ¸on
❶ Motivations for uncertain descriptor modeling ω = − 1+ δ 2 ● Building the LFT for ˙ 1+ δ 1 ω ▲ 1st step: descriptor form with no denominators ω + δ 1 ˙ ˙ ω = − ω − δ 2 ω ▲ 2nd step: all multiplications correspond to a feedback w 1 = δ 1 z 1 w 1 = δ 2 z 2 ω + w 1 = − ω − w 2 ˙ : , z 1 = ˙ z 2 = ω ω � � � � � � 0 δ 1 z 1 w 1 ▲ 3rd step: descriptor LFT: ∆ = , z ∆ = , w ∆ = , 0 δ 2 z 2 w 2 � � � � 1 0 0 − 1 − 1 − 1 ˙ ω ω = , w ∆ = ∆ z ∆ − 1 1 0 0 0 0 z ∆ w ∆ 0 0 1 1 0 0 ▲ last step: invert the left-hand side matrix µ Control’12, May 31, Besanc 5 ¸on
❶ Motivations for uncertain descriptor modeling ω = − 1+ δ 2 ● LFT for ˙ 1+ δ 1 ω − 1 2 2 3 3 1 0 0 − 1 − 1 − 1 2 3 4 δ 1 0 − 1+ δ 2 6 7 6 7 1+ δ 1 = 5 ⋆ − 1 1 0 0 0 0 6 7 6 7 5 0 δ 2 4 5 4 0 0 1 1 0 0 2 3 − 1 − 1 − 1 2 3 0 4 δ 1 6 7 = 5 ⋆ − 1 − 1 − 1 6 7 5 0 δ 2 4 1 0 0 − 1 2 2 3 0 2 3 2 3 1 3 4 δ 1 0 4 − 1 − 1 4 δ 1 0 4 − 1 h i = − 1 + @ I − − 1 − 1 5 5 5 A 5 0 0 0 0 1 δ 2 δ 2 − 1 2 2 3 3 4 1 + δ 1 4 − 1 δ 2 h i = − 1 − δ 1 δ 2 5 5 0 1 1 2 3 4 − 1+ δ 2 h i 5 = − 1 + δ 1 − δ 2 1+ δ 1 = − 1+ δ 2 1+ δ 1 = − 1 − δ 1 δ 2 1+ δ 1 1 ■ The example shows the interest of descriptor models, even if only for technical manipulations µ Control’12, May 31, Besanc 6 ¸on
❶ Motivations for uncertain descriptor modeling ■ All fractional models have affine descriptor representations [MAS03] ▲ Proof: All fractional models can be converted to an LFT ˙ x A B ∆ x = , w ∆ = ∆ z ∆ z ∆ C ∆ D ∆ w ∆ ▲ the LFT gives the affine descriptor form: − B ∆ ∆ ˙ I x A = x I − D ∆ ∆ O z ∆ C ∆ ● Can give representations of smaller dimensions ▲ Example 1 δ 1 δ 2 ω ˙ − 1 = ω ⇔ (1 + δ 1 ) ˙ ω = − (1 + δ 2 ) ω 0 1 + δ 1 − 1 δ 2 z 1 0 0 1 1 z 2 µ Control’12, May 31, Besanc 7 ¸on
❶ Motivations for uncertain descriptor modeling ■ General descriptor models E xx ˙ x + E xπ π = Ax + Bu y + E xy ˙ x + E yπ π = Cx + Du ● x : state ; u : inputs ● π : linearly constrained signals ● E xx and A may not be square x ˙ E ˙ A square and ˙ ▲ Can be converted to ˆ x = ˆ x + ˆ Bu with ˆ E and ˆ ˆ A ˆ x = ˆ π λ ▲ Not recommend: increased size of the model µ Control’12, May 31, Besanc 8 ¸on
Outline ❶ Motivations for uncertain descriptor modeling ❷ Affine polytopic models ❸ LFT models - frequency dependent models ❹ Augmented descriptor models and conservatism reduction µ Control’12, May 31, Besanc 9 ¸on
❷ Affine polytopic models ■ All fractional models have affine descriptor representations E xx (∆) ˙ x + E xπ (∆) π = A (∆) x + B (∆) u y + E xy (∆) ˙ x + E yπ (∆) π = C (∆) x + D (∆) u ● Models also used for polynomial non-linear models [CTF02] ■ General affine descriptor data − E xx (∆) − E xπ (∆) A (∆) B (∆) = M (∆) − E yx (∆) − E yπ (∆) C (∆) D (∆) ● Different classes of affine models ▲ intervals: M � M (∆) � M (element-wise m ij ≤ m ij (∆) ≤ m ij ) ▲ parallelotopes: M (∆) = M | 0 | + � ¯ p p =1 δ p M | p | : | δ p | ≤ 1 � v ] � M [ v =1 ... ¯ ▲ polytopes: M (∆) ∈ co ● intervals ⊂ parallelotopes ⊂ polytopes µ Control’12, May 31, Besanc 10 ¸on
❷ Affine polytopic models x2eq x1 ■ Example: two mass spring system k u M1 w2 M2 w1 f M 1 ¨ x 1 + f ( ˙ x 1 − ˙ x 2 ) + k ( x 1 − x 2 ) = u + w 1 M 2 ¨ x 2 + f ( ˙ x 2 − ˙ x 1 ) + k ( x 2 − x 1 ) = w 2 ● General affine data model x 1 ¨ ¨ x 2 � � u + w 1 M 1 0 f − f k − k ˙ x 1 = ˙ x 2 0 − f − k M 2 f k w 2 x 1 � �� � = M (∆) x 2 µ Control’12, May 31, Besanc 11 ¸on
❷ Affine polytopic models ■ Example: two mass spring system - continued ● 4 uncertain parameters M i ≤ M i ≤ M i , f ≤ f ≤ f , k ≤ k ≤ k � � M 1 0 f − f k − k M (∆) = 0 − f − k M 2 f k ● Interval model generates conservatism (elements assumed independent) 0 − f − k M 1 f k 0 M 2 − f f − k k 0 − f − k M 1 f k � 0 − f − k M 2 f k M 1 0 f − f k − k � 0 − f − k M 2 f k µ Control’12, May 31, Besanc 12 ¸on
❷ Affine polytopic models ■ Example: two mass spring system - continued � � 0 − f − k M 1 f k M (∆) = 0 M 2 − f f − k k ● Parallelotopic model ▲ Nominal model: M | 0 | (center of the intervals) 1 0 0 0 0 0 M (∆) = M | 0 | + δ M 1 1 2 ( M 1 − M 1 ) 0 0 0 0 0 0 . . . 0 0 0 0 1 − 1 1 + δ k 2( k − k ) 0 0 0 0 − 1 1 � �� � M | k | ▲ M | k | ”axis” of variations along δ k . µ Control’12, May 31, Besanc 13 ¸on
❷ Affine polytopic models ■ Example: two mass spring system - continued � � 0 − f − k M 1 f k M (∆) = 0 − f − k M 2 f k ● Polytopic model: 2 4 = 16 vertices ( δ i = ± 1 in parallelotopic model) � � 0 − f − k M 1 f k M [1] = 0 − f − k M 2 f k � � M 1 0 f − f k − k M [2] = 0 − f − k M 2 f k . . . � � 0 − f − k M 1 f k M [16] = 0 − f − k M 2 f k µ Control’12, May 31, Besanc 14 ¸on
❷ Affine polytopic models ■ Some techniques to deal with affine uncertain models ● General type of analysis criteria η T Θ(∆) η < 0 , ∀ η � = 0 : M (∆) η = 0 ▲ Example: negative definite derivative of Lyapunov function V = x T P (∆) x � � � � � � O P (∆) x ˙ ˙ V = η T η < 0 , ∀ η = � = 0 : η = 0 − I A (∆) P (∆) O x ( M ⊥ (∆) matrix generating the null-space of M (∆) ) ● Usual LMI type result M ⊥ T (∆)Θ(∆) M ⊥ (∆) < O ▲ Problem: M ⊥ (∆) is a rational function of ∆ ▲ Solutions: SOS [HG05, Sch06], Poly´ a [CGTV09, OdOP08] µ Control’12, May 31, Besanc 15 ¸on
❷ Affine polytopic models ■ Some techniques to deal with affine uncertain models ● General type of analysis criteria η T Θ(∆) η < 0 , ∀ η � = 0 : M (∆) η = 0 ( M ⊥ (∆) matrix generating the null-space of M (∆) ) ● Usual LMI type result M ⊥ T (∆)Θ(∆) M ⊥ (∆) < O ● Slack variables results (variables issued from the ”creation” Finsler lemma) Θ(∆) < FM (∆) + M T (∆) F T ∃ F : ▲ Conservative, but sufficient to test at the vertices ▲ Θ(∆) affine (parameter-dependent Lyapunov function) ▲ [OBG99, PABB00, EH04, PDSV09] µ Control’12, May 31, Besanc 16 ¸on
Outline ❶ Motivations for uncertain descriptor modeling ❷ Affine polytopic models ❸ LFT models - frequency dependent models ❹ Augmented descriptor models and conservatism reduction µ Control’12, May 31, Besanc 17 ¸on
Recommend
More recommend