61a extra lecture 2
play

61A Extra Lecture 2 Thursday, February 5 Announcements 2 - PowerPoint PPT Presentation

61A Extra Lecture 2 Thursday, February 5 Announcements 2 Announcements If you want 1 unit (pass/no pass) of credit for this CS 98, you need to: 2 Announcements If you want 1 unit (pass/no pass) of credit for this CS 98, you need to:


  1. 61A Extra Lecture 2 Thursday, February 5

  2. Announcements 2

  3. Announcements • If you want 1 unit (pass/no pass) of credit for this CS 98, you need to: 2

  4. Announcements • If you want 1 unit (pass/no pass) of credit for this CS 98, you need to: § Enroll in "Additional Topics on the Structure and Interpretation of Computer Programs" 2

  5. Announcements • If you want 1 unit (pass/no pass) of credit for this CS 98, you need to: § Enroll in "Additional Topics on the Structure and Interpretation of Computer Programs" § Course control number: 25709 2

  6. Announcements • If you want 1 unit (pass/no pass) of credit for this CS 98, you need to: § Enroll in "Additional Topics on the Structure and Interpretation of Computer Programs" § Course control number: 25709 • Extra Homework 1 due Thursday 2/12 @ 11:59pm 2

  7. Dice

  8. Hog: The End Game 4

  9. Hog: The End Game You: 98 Them: 99 4

  10. Hog: The End Game You: 98 You: 92 Them: 99 Them: 99 4

  11. Hog: The End Game You: 98 You: 92 You: 88 Them: 99 Them: 99 Them: 99 4

  12. Hog: The End Game You: 98 You: 92 You: 88 You: 80 Them: 99 Them: 99 Them: 99 Them: 99 4

  13. Hog: The End Game You: 98 You: 92 You: 88 You: 80 Them: 99 Them: 99 Them: 99 Them: 99 What is the chance that I'll score at least k points rolling n six-sided dice? 4

  14. Hog: The End Game You: 98 You: 92 You: 88 You: 80 Them: 99 Them: 99 Them: 99 Them: 99 What is the chance that I'll score at least k points rolling n six-sided dice? S n : Score from rolling n dice : A single outcome of rolling once t 4

  15. Hog: The End Game You: 98 You: 92 You: 88 You: 80 Them: 99 Them: 99 Them: 99 Them: 99 What is the chance that I'll score at least k points rolling n six-sided dice? 6 X S n : Score from rolling n dice P ( S n > k ) = P ( t ) · P ( S n − 1 > k − t ) : A single outcome of rolling once t =2 t 4

  16. Hog: The End Game You: 98 You: 92 You: 88 You: 80 Them: 99 Them: 99 Them: 99 Them: 99 What is the chance that I'll score at least k points rolling n six-sided dice? 6 X S n : Score from rolling n dice P ( S n > k ) = P ( t ) · P ( S n − 1 > k − t ) : A single outcome of rolling once t =2 t (assuming k > 1) 4

  17. Hog: The End Game You: 98 You: 92 You: 88 You: 80 Them: 99 Them: 99 Them: 99 Them: 99 What is the chance that I'll score at least k points rolling n six-sided dice? 6 X S n : Score from rolling n dice P ( S n > k ) = P ( t ) · P ( S n − 1 > k − t ) : A single outcome of rolling once t =2 t (assuming k > 1) The chance to score at least k in n rolls can be computed using tree recursion! 4

  18. Hog: The End Game You: 98 You: 92 You: 88 You: 80 Them: 99 Them: 99 Them: 99 Them: 99 What is the chance that I'll score at least k points rolling n six-sided dice? 6 X S n : Score from rolling n dice P ( S n > k ) = P ( t ) · P ( S n − 1 > k − t ) : A single outcome of rolling once t =2 t (assuming k > 1) The chance to score at least k in n rolls can be computed using tree recursion! Sum over each possible dice outcome t that does not pig out : 
 The chance to roll t times the chance to score at least k - t points using n - 1 rolls. 4

  19. Hog: The End Game You: 98 You: 92 You: 88 You: 80 Them: 99 Them: 99 Them: 99 Them: 99 What is the chance that I'll score at least k points rolling n six-sided dice? 6 X S n : Score from rolling n dice P ( S n > k ) = P ( t ) · P ( S n − 1 > k − t ) : A single outcome of rolling once t =2 t (assuming k > 1) The chance to score at least k in n rolls can be computed using tree recursion! Sum over each possible dice outcome t that does not pig out : 
 The chance to roll t times the chance to score at least k - t points using n - 1 rolls. Base case : The chance to score at least 0 in 0 rolls is 1 (guaranteed) 4

  20. Hog: The End Game You: 98 You: 92 You: 88 You: 80 Them: 99 Them: 99 Them: 99 Them: 99 What is the chance that I'll score at least k points rolling n six-sided dice? 6 X S n : Score from rolling n dice P ( S n > k ) = P ( t ) · P ( S n − 1 > k − t ) : A single outcome of rolling once t =2 t (assuming k > 1) The chance to score at least k in n rolls can be computed using tree recursion! Sum over each possible dice outcome t that does not pig out : 
 The chance to roll t times the chance to score at least k - t points using n - 1 rolls. Base case : The chance to score at least 0 in 0 rolls is 1 (guaranteed) Base case : The chance to score more than 0 in 0 rolls is 0 (impossible) 4

  21. Hog: The End Game You: 98 You: 92 You: 88 You: 80 Them: 99 Them: 99 Them: 99 Them: 99 What is the chance that I'll score at least k points rolling n six-sided dice? 6 X S n : Score from rolling n dice P ( S n > k ) = P ( t ) · P ( S n − 1 > k − t ) : A single outcome of rolling once t =2 t (assuming k > 1) The chance to score at least k in n rolls can be computed using tree recursion! Sum over each possible dice outcome t that does not pig out : 
 The chance to roll t times the chance to score at least k - t points using n - 1 rolls. Base case : The chance to score at least 0 in 0 rolls is 1 (guaranteed) Base case : The chance to score more than 0 in 0 rolls is 0 (impossible) (Demo) 4

  22. Memoization

  23. Recursive Computation of the Fibonacci Sequence Our first example of tree recursion: 6

  24. Recursive Computation of the Fibonacci Sequence def fib (n): Our first example of tree recursion: if n == 0 : return 0 elif n == 1 : return 1 else : return fib(n- 2 ) + fib(n- 1 ) 6

  25. Recursive Computation of the Fibonacci Sequence def fib (n): Our first example of tree recursion: if n == 0 : return 0 elif n == 1 : return 1 else : return fib(n- 2 ) + fib(n- 1 ) 6 http://en.wikipedia.org/wiki/File:Fibonacci.jpg

  26. Recursive Computation of the Fibonacci Sequence def fib (n): Our first example of tree recursion: if n == 0 : return 0 elif n == 1 : fib(5) return 1 else : return fib(n- 2 ) + fib(n- 1 ) 6 http://en.wikipedia.org/wiki/File:Fibonacci.jpg

  27. Recursive Computation of the Fibonacci Sequence def fib (n): Our first example of tree recursion: if n == 0 : return 0 elif n == 1 : fib(5) return 1 else : return fib(n- 2 ) + fib(n- 1 ) fib(3) 6 http://en.wikipedia.org/wiki/File:Fibonacci.jpg

  28. Recursive Computation of the Fibonacci Sequence def fib (n): Our first example of tree recursion: if n == 0 : return 0 elif n == 1 : fib(5) return 1 else : return fib(n- 2 ) + fib(n- 1 ) fib(3) fib(4) 6 http://en.wikipedia.org/wiki/File:Fibonacci.jpg

  29. Recursive Computation of the Fibonacci Sequence def fib (n): Our first example of tree recursion: if n == 0 : return 0 elif n == 1 : fib(5) return 1 else : return fib(n- 2 ) + fib(n- 1 ) fib(3) fib(4) fib(1) fib(2) fib(0) fib(1) 1 0 1 6 http://en.wikipedia.org/wiki/File:Fibonacci.jpg

  30. Recursive Computation of the Fibonacci Sequence def fib (n): Our first example of tree recursion: if n == 0 : return 0 elif n == 1 : fib(5) return 1 else : return fib(n- 2 ) + fib(n- 1 ) fib(3) fib(4) fib(1) fib(2) fib(2) fib(3) fib(0) fib(1) 1 fib(0) fib(1) fib(1) fib(2) 0 1 fib(0) fib(1) 0 1 1 0 1 6 http://en.wikipedia.org/wiki/File:Fibonacci.jpg

  31. Recursive Computation of the Fibonacci Sequence def fib (n): Our first example of tree recursion: if n == 0 : return 0 elif n == 1 : fib(5) return 1 else : return fib(n- 2 ) + fib(n- 1 ) fib(3) fib(4) fib(1) fib(2) fib(2) fib(3) fib(0) fib(1) 1 fib(0) fib(1) fib(1) fib(2) 0 1 fib(0) fib(1) 0 1 1 0 1 6 http://en.wikipedia.org/wiki/File:Fibonacci.jpg

  32. Recursive Computation of the Fibonacci Sequence def fib (n): Our first example of tree recursion: if n == 0 : return 0 elif n == 1 : fib(5) return 1 else : return fib(n- 2 ) + fib(n- 1 ) fib(3) fib(4) fib(1) fib(2) fib(2) fib(3) fib(0) fib(1) 1 fib(0) fib(1) fib(1) fib(2) 0 1 fib(0) fib(1) 0 1 1 0 1 6 http://en.wikipedia.org/wiki/File:Fibonacci.jpg

  33. Recursive Computation of the Fibonacci Sequence def fib (n): Our first example of tree recursion: if n == 0 : return 0 elif n == 1 : fib(5) return 1 else : return fib(n- 2 ) + fib(n- 1 ) fib(3) fib(4) fib(1) fib(2) fib(2) fib(3) fib(0) fib(1) 1 fib(0) fib(1) fib(1) fib(2) 0 1 fib(0) fib(1) 0 1 1 0 1 6 http://en.wikipedia.org/wiki/File:Fibonacci.jpg

  34. Recursive Computation of the Fibonacci Sequence def fib (n): Our first example of tree recursion: if n == 0 : return 0 elif n == 1 : fib(5) return 1 else : return fib(n- 2 ) + fib(n- 1 ) fib(3) fib(4) fib(1) fib(2) fib(2) fib(3) fib(0) fib(1) 1 fib(0) fib(1) fib(1) fib(2) 0 1 fib(0) fib(1) 0 1 1 0 1 6 http://en.wikipedia.org/wiki/File:Fibonacci.jpg

  35. Recursive Computation of the Fibonacci Sequence def fib (n): Our first example of tree recursion: if n == 0 : return 0 elif n == 1 : fib(5) return 1 else : return fib(n- 2 ) + fib(n- 1 ) fib(3) fib(4) fib(1) fib(2) fib(2) fib(3) fib(0) fib(1) 1 fib(0) fib(1) fib(1) fib(2) 0 1 fib(0) fib(1) 0 1 1 0 1 6 http://en.wikipedia.org/wiki/File:Fibonacci.jpg

  36. Recursive Computation of the Fibonacci Sequence def fib (n): Our first example of tree recursion: if n == 0 : return 0 elif n == 1 : fib(5) return 1 else : return fib(n- 2 ) + fib(n- 1 ) fib(3) fib(4) fib(1) fib(2) fib(2) fib(3) fib(0) fib(1) 1 fib(0) fib(1) fib(1) fib(2) 0 1 fib(0) fib(1) 0 1 1 0 1 6 http://en.wikipedia.org/wiki/File:Fibonacci.jpg

Recommend


More recommend