3 resonance region and isospin
play

3. Resonance Region and Isospin Or: Hints of Hadron Substructure - PowerPoint PPT Presentation

PHYS 6610: Graduate Nuclear and Particle Physics I H. W. Griehammer INS Institute for Nuclear Studies The George Washington University Institute for Nuclear Studies Spring 2018 II. Phenomena 3. Resonance Region and Isospin Or: Hints of


  1. PHYS 6610: Graduate Nuclear and Particle Physics I H. W. Grießhammer INS Institute for Nuclear Studies The George Washington University Institute for Nuclear Studies Spring 2018 II. Phenomena 3. Resonance Region and Isospin Or: Hints of Hadron Substructure References: [PRSZR 2.4, 6.2, 7.1/4; HG 6.8, 14.2, 8.4-7; Per 3.12; HM 2.6/7; PDG 48] PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.3.0

  2. (a) The Resonance Region d 2 σ d Ω d E ′ with E ′ 1 p ( e , e ′ ) X inelastic inclusive: E < unconstrained. 1 + E M ( 1 − cos θ ) ep → e ′ X at fixed θ 1 Virtual probe with wave length λ ∼ Q 2 . = ⇒ � Dissipate energy & momentum into small volume ∼ λ 3 . [Tho] Q 2 � ( 0 . 3GeV ) 2 � r − 2 N : Response of whole nucleon: (a) Excite resonances = ⇒ elastic process with bump: W 2 =( p + q ) 2 resonance as global excitation of nucleon. inv. mass (b) Knock out constituents (virtual particle cloud) = ⇒ inelastic process, also via resonance. ∝ Q − 6 γ π + resonance e.g. [HG 6.18] p n Importance of elastic decreases. PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.3.1

  3. (b) Nucleon Resonances [PRSZR 7.1] PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.3.2

  4. More Resonances: Different Probes – Same Pattern W 2 = ( p + q ) 2 : inv. mass 2 of fragments First Resonance Region: One narrow, isolated bump around Q ≈ [ 0 . 3 ... 0 . 6 ] GeV ⇔ W ≈ 1 . 2GeV also in π + p , π 0 p , π − p , π − n (etc.) The ∆ ( 1232 ) : ∆ ++ , ∆ + , ∆ 0 , ∆ − Width Γ ≈ 100MeV (FWHM) ⇒ τ = 1 Γ ≈ 2 3 × 10 − 23 s = Second Resonance Region: Q ∼ [ 0 . 5 ... 1 ] GeV ( W ∼ [ 1 . 5 ... 2 ] GeV ) ep → e ′ X at fixed θ Two isolated slightly broader bumps in π − p , π + n , γ p in π + p , π − n but nothing (see next slide) [PRSZR 7.1; data 1968] PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.3.3

  5. Resonances in π N → π N Scattering & γ N → X Photo-Absorption Not all bumps in all channels, but some pattern! π N → π N elastic γ p → X photo-absorption (inelastic) [Weise: “Quarks, Hadrons,. . . ”, Les Houches Lecture 1996] PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.3.4

  6. Some Baryon Resonances Identified by the Particle Data Group What is the guiding principle/underlying symmetry? PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.3.5

  7. (c) Isospin in Nuclear Physics Heisenberg 1932 [PRSZR] isotriplet I = 1 [HG] isodoublet I = 1 2 PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.3.6

  8. (d) Isospin in Particle Physics a a a EV to I 3 nucleon � EV to I 3 EV to I 3 � pion     | π + � | ∆ ++ � + 3 + 1 | p � ∆ ( 1232 ) iso- + 1 iso-doublet 2 2 iso-triplet + )  | π 0 �  | ∆ + � + 1 I ( J P ) = 1 2 ( 1 − 1   | n � quadruplet 0     2 2 2 I ( J P ) = 1 ( 1 − ) + )   | π − � | ∆ 0 � − 1 I ( J P ) = 3 2 ( 3 − 1   2 2 | ∆ − � − 3 m π ± − m π 0 M p − M n m π ± + m π 0 ≈ 1 . 7 × 10 − 2 2 ≈ 0 . 7 × 10 − 3 M p + M n [HG] Q = I 3 + B Relation between charge, baryon number, isospin: 2 � Postulate: Strong Interactions are approximately isospin-independent: [ I , H strong ] ≈ 0 . Mass difference from electromagnetism & small explicit breaking: ε ( H em + H expl ) with ε ∼ 10 − 2 . PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.3.7

  9. (e) Iso-Multiplets Predict Cross Section Ratios Postulate: Isospin Multiplets have common origin. = ⇒ Combine like spin. � I tot = � I N ⊗ 1 π + 1 N ⊗ � I π = ⇒ | IM � = ( IM | I N m n , I π m π ) | I N m N �⊗| I π m π � ∑ m N m π � �� � Clebsch-Gordan with M = m N + m π , | I N − I π | ≤ I ≤ I N + I π like spinology. ⇒ � I ′ M ′ |M strong | IM � = δ II ′ δ MM ′ M 2 I + 1 ( E ) : reduced ME is function of E only, labelled by I . = = ⇒ Just 2 independent functions M 2 ( E ) , M 4 ( E ) characterise 8 π N processes: 6 direct/elastic reactions: N π ± 0 → N π ± 0 & 2 charge-exchange reactions p π 0 ↔ n π + , p π − ↔ n π 0 I = 3 I = 1 π triplet N doublet 2 2 Clebsch-Gordan coefficient | I N = 1 M = 3 1 − 1 − 3 1 − 1 2 ;m N � | I π = 1;m π � 2 2 2 2 2 2 ( IM | I N m n , I π m π ) + 1 π + + 1 p 1 2 � � π + − 1 1 2 + 1 n 2 3 3 � � + 1 π 0 2 1 − p 0 2 3 3 � � − 1 2 1 π 0 n 0 2 3 3 � � + 1 1 2 π − − 1 − p 2 3 3 − 1 π − − 1 n 1 2 PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.3.8

  10. Compare to Data PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.3.9

  11. Baryon Resonances, Again: I ( J P ) Assignment Nucleon Resonances: I = 1 ∆ Resonances: I = 3 2 2 PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.3.10

  12. (f) Isospin-Invariant Interactions (g) Photons and Isospin (h) The Fundamental Doublet PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.3.11

  13. Next: 4. Deep Inleastic Scattering and Partons Familiarise yourself with: [HM 9; PRSZR 7.2, 8.1/4-5; HG 6.8-10] PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.3.12

Recommend


More recommend