2d stabilizer codes
play

2D Stabilizer Codes Hctor Bombn Perimeter Institute collaborators - PowerPoint PPT Presentation

H. Bombin, G. Duclos-Cianci, D. Poulin arXiv:1103.4606 H. Bombin arXiv:1107.2707 Universal Topological Phase of 2D Stabilizer Codes Hctor Bombn Perimeter Institute collaborators David Poulin Universit de Sherbrooke Guillaume


  1. H. Bombin, G. Duclos-Cianci, D. Poulin arXiv:1103.4606 H. Bombin arXiv:1107.2707 Universal Topological Phase of 2D Stabilizer Codes Héctor Bombín Perimeter Institute

  2. collaborators David Poulin Université de Sherbrooke Guillaume Duclos-Cianci

  3. topological codes general structure?

  4. translational invariance classify the bulk!

  5. topological order • gapped excitations • GS degeneracy • locally indistinguishable GS

  6. topological order • gapped excitations topological order describes the equivalent • GS degeneracy classes defined by local unitary evolutions • locally indistinguishable GS (Chen, Gu, Wen ’10)

  7. topological order • they argue that two gapped GSs… …are in the same phase …can be connected adiabatically without closing the gap …are connected by a local unitary transformation …are connected by a quantum circuit of constant depth

  8. topological order classify topological codes/order = classify long-range entanglement patterns

  9. goals structure of 2D topological stabilizer (subsystem) codes equivalence up to local transformations

  10. outline • anyons & toric code • universality • subsystem codes • conclusions

  11. anyons in 2D systems

  12. abelian anyons

  13. toric code

  14. strings & charges

  15. mutual statistics • semionic interactions:

  16. self-statistics • e, m are bosons, their composite is fermionic:

  17. anyon model

  18. outline • anyons & toric code • universality • subsystem codes • conclusions

  19. topological stabilizer groups • local and translationally invariant (LTI) generators

  20. topological stabilizer groups • local and translationally invariant (LTI) generators local undetectable errors do not affect encoded states

  21. topological stabilizer groups

  22. topological stabilizer groups

  23. local equivalence coarse add/remove LTI graining disentangled Clifford qubits mapping

  24. universality result • same anyon model ↔ equivalent! • ruling out chiral anyons (Kitaev ‘06): every 2D TSG is locally equivalent to a finite number of copies of the toric code

  25. proof outline 1. 2D TSGs admit LTI independent generators 2. # charges < ∞ 3. anyon model from string operators 4. string segment framework , plaquette stabilizers 5. other stabilizers have no charge 6. map: string segments <--> string segments, uncharged stabilizers <--> single qubit stabilizers

  26. string operators • coarse grain: • till each site holds any charge • till excitation pairs of same charge can be removed with string-like operators

  27. anyon model

  28. anyon model • well defined:

  29. anyon model • well defined:

  30. anyon model • charge generators: k k 1 1 2 2 b b b b b/f b/f i j i j i j

  31. anyon model • charge generators: k k 1 1 2 2 b b b b b/f b/f toric code chiral case

  32. string framework 2 1 1 2 • model independent commutation relations

  33. mapping

  34. outline • anyons & toric code • universality • subsystem codes • conclusions

  35. subsystem codes

  36. subsystem codes stabilizer group gauge group

  37. topological subsystem codes

  38. topological subsystem codes local undetectable errors do not affect encoded states

  39. topological subsystem codes

  40. topological subsystem codes

  41. topological subsystem codes

  42. generalized charge • Stabilizer charge morphisms = commutators

  43. generalized charge • Gauge charge morphisms = commutators

  44. topological ‘interactions’

  45. charge morphism

  46. canonical generators • gauge charge generators: non-interacting k k l 1 1 1 2 b b b/f b/f b b b/f • dual stabilizer charge generators: k k l 1 1 1 2

  47. canonical generators • all possible anyon models are combinations of b b toric code: topological subsystem color codes: f f b subsystem toric code: f honeycomb subsystem code:

  48. string framework

  49. string framework • gauge generators (non-trivial charge) • stabilizer generators (non-trivial charge)

  50. string framework every 2D TSC has a structure based on an anyon model

  51. conclusions & questions • the long-range entanglement pattern of toric codes is universal for 2D topological stabilizer models • all 2D TSCs are anyon based • the same approach could be used for boundaries or point defects… • more general 2D models? • what about 3D?

Recommend


More recommend