13
play

13 Variational Formulation of Plane Beam Element IFEM Ch 13 - PDF document

Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM 13 Variational Formulation of Plane Beam Element IFEM Ch 13 Slide 1 Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Beams


  1. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM 13 Variational Formulation of Plane Beam Element IFEM Ch 13 – Slide 1

  2. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Beams Resist Primarily Transverse Loads IFEM Ch 13 – Slide 2

  3. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Transverse Loads are Transported to Supports by Flexural Action Compressive stress Neutral surface Tensile stress IFEM Ch 13 – Slide 3

  4. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Beam Configuration Spatial (General Beams) Plane (This Chapter) Beam Models Bernoulli-Euler Timoshenko (advanced topic not covered in class) IFEM Ch 13 – Slide 4

  5. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Plane Beam Terminology y , v q ( x ) y , v Beam cross section x, u z Neutral axis Symmetry plane L Neutral surface IFEM Ch 13 – Slide 5

  6. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Common Support Conditions ������ Simply Supported ������ ������ Cantilever IFEM Ch 13 – Slide 6

  7. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Basic Relations for Bernoulli-Euler Model of Plane Beam � − v ′ � � − θ � u ( x , � − ∂v( x ) � y y y � ) � y ∂ x = = = y v( x , ) v( x ) v( x ) v( x ) ∂ x = − ∂ 2 v ∂ x 2 = − d 2 v e = ∂ u y y dx 2 = − κ y σ = Ee = − E d 2 v y dx 2 = − E κ y M = E I κ Plus equilibrium equation M'' = q (not used specifically in FEM) IFEM Ch 13 – Slide 7

  8. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Tonti Diagram for Bernoulli-Euler Model of Plane Beam (Strong Form) Displacement Prescribed Distributed Transverse BCs end transverse load displacements displacements q(x) v(x) κ = v'' Kinematic M''=q Equilibrium Bending M = EI κ Force BCs Prescribed Curvature moment end loads κ (x) Constitutive M(x) IFEM Ch 13 – Slide 8

  9. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Total Potential Energy of Beam Member � = U − W � L � L � 2 � ∂ 2 v � U = 1 σ xx e xx dV = 1 M κ dx = 1 d x E I 2 2 2 ∂ x 2 V 0 0 � L E I κ 2 dx = 1 2 0 � L W = q v dx . 0 IFEM Ch 13 – Slide 9

  10. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Degrees of Freedom of Beam Element θ j v j θ i v i j i v i   θ i u ( e ) =   v j   θ j IFEM Ch 13 – Slide 10

  11. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Bernoulli-Euler Kinematics of Plane Beam Element y ,v P ′ ( x + u , y + v) θ j E = E ( e ) , I = I ( e ) v j θ i v i x, u j i x ( e ) P ( x , y ) ℓ = L IFEM Ch 13 – Slide 11

  12. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Plane Beam Element Shape Functions ξ = 1 ξ = − 1 v ( e ) N ( e ) v i (ξ) = 1 4 ( 1 − ξ) 2 ( 2 + ξ) = 1 i θ ( e ) = 1 i N ( e ) θ i (ξ) = 1 8 ℓ( 1 − ξ) 2 ( 1 + ξ) v ( e ) = 1 N ( e ) v j (ξ) = 1 4 ( 1 + ξ) 2 ( 2 − ξ) j N ( e ) θ j (ξ) = − 1 8 ℓ( 1 + ξ) 2 ( 1 − ξ) θ ( e ) = 1 j IFEM Ch 13 – Slide 12

  13. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Shape Functions in Terms of Natural Coordinate ξ v ( e )   i θ ( e )   i v ( e ) = [ N ( e ) N ( e ) N ( e )   = Nu ( e ) N ( e ) θ j ]   v i θ i v j v ( e )   j   θ ( e ) j ξ = 2 x ℓ − 1 N ( e ) N ( e ) v i = 1 4 ( 1 − ξ) 2 ( 2 + ξ), = 1 8 ℓ( 1 − ξ) 2 ( 1 + ξ), θ i N ( e ) N ( e ) v j = 1 4 ( 1 + ξ) 2 ( 2 − ξ), = − 1 8 ℓ( 1 + ξ) 2 ( 1 − ξ). θ j IFEM Ch 13 – Slide 13

  14. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Element Stiffness and Consistent Node Forces B = 1 6 ξ − 6 ξ � � 3 ξ − 1 3 ξ + 1 ℓ ℓ ℓ 2 u ( e ) T K ( e ) u ( e ) − u ( e ) T f ( e ) � ( e ) = 1 � ℓ � 1 E I B T B dx = E I B T B 1 K ( e ) = 2 ℓ d ξ 0 − 1 � ℓ � 1 N T q dx = N T q 1 f ( e ) = 2 ℓ d ξ 0 − 1 IFEM Ch 13 – Slide 14

  15. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Analytical Computation of Prismatic Beam Element Stiffness 36 ξ 2 − 36 ξ 2 6 ξ( 3 ξ − 1 )ℓ 6 ξ( 3 ξ + 1 )ℓ   � 1 ( 9 ξ 2 − 1 )ℓ 2 ( 3 ξ − 1 ) 2 ℓ 2 − 6 ξ( 3 ξ − 1 )ℓ K ( e ) = E I    d ξ   2 ℓ 3 36 ξ 2   − 6 ξ( 3 ξ + 1 )ℓ − 1  ( 3 ξ + 1 ) 2 ℓ 2 symm 12 6 ℓ − 12 6 ℓ   4 ℓ 2 2 ℓ 2 = E I − 6 ℓ   ℓ 3 12 − 6 ℓ   4 ℓ 2 symm IFEM Ch 13 – Slide 15

  16. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Mathematica Script for Symbolic Computation of Prismatic Plane Beam Element Stiffness ClearAll[EI,l, Ξ ]; B={{6* Ξ ,(3* Ξ -1)*l,-6* Ξ ,(3* Ξ +1)*l}}/l^2; Ke=(EI*l/2)*Integrate[Transpose[B].B,{ Ξ ,-1,1}]; Ke=Simplify[Ke]; Print["Ke for prismatic beam:"]; Print[Ke//MatrixForm]; Ke for prismatic beam:  EI  EI �  EI  EI � � � � � l  l  � �������� ������� �������� l  ���� �������� ������� �������� l  ���� � � � � � � � � � �  EI  EI �  EI  EI � � � � � � �������� l  ���� �������� ����� �������� l  ���� �������� ���� � � l l � � � � � � � � �  EI �  EI  EI �  EI � � � � l  l  � �������� ������� �������� l  ���� �������� ������� �������� l  ���� � � � � � � � � �  EI  EI  EI �  EI � � �������� l  ���� �������� ���� �������� l  ���� �������� ����� l l Corroborates the result from hand integration. IFEM Ch 13 – Slide 16

  17. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Analytical Computation of Consistent Node Force Vector for Uniform Load q 1 4 ( 1 − ξ) 2 ( 2 + ξ)   � 1 � 1 8 ℓ( 1 − ξ) 2 ( 1 + ξ) 1   f ( e ) = 1 N d ξ = 1 2 q ℓ 2 q ℓ  d ξ   1 4 ( 1 + ξ) 2 ( 2 − ξ)   − 1 − 1  − 1 8 ℓ( 1 + ξ) 2 ( 1 − ξ) 1   2 1 12 ℓ   = q ℓ   "fixed end moments" 1    2  − 1 12 ℓ IFEM Ch 13 – Slide 17

  18. Department of Engineering Mechanics PhD. TRUONG Tich Thien Introduction to FEM Mathematica Script for Computation of Consistent Node Force Vector for Uniform q ClearAll[q,l, Ξ ] Ne={{2*(1- Ξ )^2*(2+ Ξ ), (1- Ξ )^2*(1+ Ξ )*l, 2*(1+ Ξ )^2*(2- Ξ ),-(1+ Ξ )^2*(1- Ξ )*l}}/8; fe=(q*l/2)*Integrate[Ne,{ Ξ ,-1,1}]; fe=Simplify[fe]; Print["fe^T for uniform load q:"]; Print[fe//MatrixForm]; fe^T for uniform load q: l  q l  q � l q l q  � ������� ����������� ������� � �����������    Force vector printed as row vector to save space. IFEM Ch 13 – Slide 18

Recommend


More recommend